Whakaoti mō q
q=4
Tohaina
Kua tāruatia ki te papatopenga
q\left(-1\right)=\left(q-5\right)\times 4
Tē taea kia ōrite te tāupe q ki tētahi o ngā uara 0,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te q\left(q-5\right), arā, te tauraro pātahi he tino iti rawa te kitea o q-5,q.
q\left(-1\right)=4q-20
Whakamahia te āhuatanga tohatoha hei whakarea te q-5 ki te 4.
q\left(-1\right)-4q=-20
Tangohia te 4q mai i ngā taha e rua.
-5q=-20
Pahekotia te q\left(-1\right) me -4q, ka -5q.
q=\frac{-20}{-5}
Whakawehea ngā taha e rua ki te -5.
q=4
Whakawehea te -20 ki te -5, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}