Aromātai
-\frac{3}{8}=-0.375
Tauwehe
-\frac{3}{8} = -0.375
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{12}-\frac{\frac{7}{12}\times \frac{2}{3}}{\frac{4}{3}}
Ka taea te hautanga \frac{-1}{12} te tuhi anō ko -\frac{1}{12} mā te tango i te tohu tōraro.
-\frac{1}{12}-\frac{\frac{7\times 2}{12\times 3}}{\frac{4}{3}}
Me whakarea te \frac{7}{12} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{1}{12}-\frac{\frac{14}{36}}{\frac{4}{3}}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 2}{12\times 3}.
-\frac{1}{12}-\frac{\frac{7}{18}}{\frac{4}{3}}
Whakahekea te hautanga \frac{14}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{1}{12}-\frac{7}{18}\times \frac{3}{4}
Whakawehe \frac{7}{18} ki te \frac{4}{3} mā te whakarea \frac{7}{18} ki te tau huripoki o \frac{4}{3}.
-\frac{1}{12}-\frac{7\times 3}{18\times 4}
Me whakarea te \frac{7}{18} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{1}{12}-\frac{21}{72}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 3}{18\times 4}.
-\frac{1}{12}-\frac{7}{24}
Whakahekea te hautanga \frac{21}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{2}{24}-\frac{7}{24}
Ko te maha noa iti rawa atu o 12 me 24 ko 24. Me tahuri -\frac{1}{12} me \frac{7}{24} ki te hautau me te tautūnga 24.
\frac{-2-7}{24}
Tā te mea he rite te tauraro o -\frac{2}{24} me \frac{7}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{-9}{24}
Tangohia te 7 i te -2, ka -9.
-\frac{3}{8}
Whakahekea te hautanga \frac{-9}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}