Aromātai
-\frac{1}{3}\approx -0.333333333
Tauwehe
-\frac{1}{3} = -0.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{4}{4}+\frac{3}{4}-\frac{1}{3}}{2-\frac{1}{4}}
Me tahuri te -1 ki te hautau -\frac{4}{4}.
\frac{\frac{-4+3}{4}-\frac{1}{3}}{2-\frac{1}{4}}
Tā te mea he rite te tauraro o -\frac{4}{4} me \frac{3}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{1}{4}-\frac{1}{3}}{2-\frac{1}{4}}
Tāpirihia te -4 ki te 3, ka -1.
\frac{-\frac{3}{12}-\frac{4}{12}}{2-\frac{1}{4}}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri -\frac{1}{4} me \frac{1}{3} ki te hautau me te tautūnga 12.
\frac{\frac{-3-4}{12}}{2-\frac{1}{4}}
Tā te mea he rite te tauraro o -\frac{3}{12} me \frac{4}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{7}{12}}{2-\frac{1}{4}}
Tangohia te 4 i te -3, ka -7.
\frac{-\frac{7}{12}}{\frac{8}{4}-\frac{1}{4}}
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{-\frac{7}{12}}{\frac{8-1}{4}}
Tā te mea he rite te tauraro o \frac{8}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{7}{12}}{\frac{7}{4}}
Tangohia te 1 i te 8, ka 7.
-\frac{7}{12}\times \frac{4}{7}
Whakawehe -\frac{7}{12} ki te \frac{7}{4} mā te whakarea -\frac{7}{12} ki te tau huripoki o \frac{7}{4}.
\frac{-7\times 4}{12\times 7}
Me whakarea te -\frac{7}{12} ki te \frac{4}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-28}{84}
Mahia ngā whakarea i roto i te hautanga \frac{-7\times 4}{12\times 7}.
-\frac{1}{3}
Whakahekea te hautanga \frac{-28}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 28.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}