Aromātai
-\frac{625}{18895678704}\approx -0.000000033
Tauwehe
-\frac{625}{18895678704} = -3.307634564445122 \times 10^{-8}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-\left(9\times 2\right)^{-4}\right)\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{\left(-18^{-4}\right)\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Whakareatia te 9 ki te 2, ka 18.
\frac{-\frac{1}{104976}\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Tātaihia te 18 mā te pū o -4, kia riro ko \frac{1}{104976}.
\frac{-\frac{1}{104976}\times 81}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Tātaihia te 3 mā te pū o 4, kia riro ko 81.
\frac{-\frac{1}{1296}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Whakareatia te -\frac{1}{104976} ki te 81, ka -\frac{1}{1296}.
\frac{-\frac{1}{1296}}{6^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Whakareatia te 2 ki te 3, ka 6.
\frac{-\frac{1}{1296}}{216\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Tātaihia te 6 mā te pū o 3, kia riro ko 216.
\frac{-\frac{1}{1296}}{216\times 4\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{-\frac{1}{1296}}{864\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Whakareatia te 216 ki te 4, ka 864.
\frac{-\frac{1}{1296}}{864\times 27-\left(2^{3}-3\right)^{-4}}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
\frac{-\frac{1}{1296}}{23328-\left(2^{3}-3\right)^{-4}}
Whakareatia te 864 ki te 27, ka 23328.
\frac{-\frac{1}{1296}}{23328-\left(8-3\right)^{-4}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{-\frac{1}{1296}}{23328-5^{-4}}
Tangohia te 3 i te 8, ka 5.
\frac{-\frac{1}{1296}}{23328-\frac{1}{625}}
Tātaihia te 5 mā te pū o -4, kia riro ko \frac{1}{625}.
\frac{-\frac{1}{1296}}{\frac{14579999}{625}}
Tangohia te \frac{1}{625} i te 23328, ka \frac{14579999}{625}.
-\frac{1}{1296}\times \frac{625}{14579999}
Whakawehe -\frac{1}{1296} ki te \frac{14579999}{625} mā te whakarea -\frac{1}{1296} ki te tau huripoki o \frac{14579999}{625}.
-\frac{625}{18895678704}
Whakareatia te -\frac{1}{1296} ki te \frac{625}{14579999}, ka -\frac{625}{18895678704}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}