Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(-\frac{1}{2}x^{2}-\frac{3}{2}x\right)=x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x, arā, te tauraro pātahi he tino iti rawa te kitea o x,2.
-x^{2}-3x=x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te -\frac{1}{2}x^{2}-\frac{3}{2}x.
-x^{2}-3x-x=0
Tangohia te x mai i ngā taha e rua.
-x^{2}-4x=0
Pahekotia te -3x me -x, ka -4x.
x\left(-x-4\right)=0
Tauwehea te x.
x=0 x=-4
Hei kimi otinga whārite, me whakaoti te x=0 me te -x-4=0.
x=-4
Tē taea kia ōrite te tāupe x ki 0.
2\left(-\frac{1}{2}x^{2}-\frac{3}{2}x\right)=x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x, arā, te tauraro pātahi he tino iti rawa te kitea o x,2.
-x^{2}-3x=x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te -\frac{1}{2}x^{2}-\frac{3}{2}x.
-x^{2}-3x-x=0
Tangohia te x mai i ngā taha e rua.
-x^{2}-4x=0
Pahekotia te -3x me -x, ka -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -4 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2\left(-1\right)}
Tuhia te pūtakerua o te \left(-4\right)^{2}.
x=\frac{4±4}{2\left(-1\right)}
Ko te tauaro o -4 ko 4.
x=\frac{4±4}{-2}
Whakareatia 2 ki te -1.
x=\frac{8}{-2}
Nā, me whakaoti te whārite x=\frac{4±4}{-2} ina he tāpiri te ±. Tāpiri 4 ki te 4.
x=-4
Whakawehe 8 ki te -2.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{4±4}{-2} ina he tango te ±. Tango 4 mai i 4.
x=0
Whakawehe 0 ki te -2.
x=-4 x=0
Kua oti te whārite te whakatau.
x=-4
Tē taea kia ōrite te tāupe x ki 0.
2\left(-\frac{1}{2}x^{2}-\frac{3}{2}x\right)=x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x, arā, te tauraro pātahi he tino iti rawa te kitea o x,2.
-x^{2}-3x=x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te -\frac{1}{2}x^{2}-\frac{3}{2}x.
-x^{2}-3x-x=0
Tangohia te x mai i ngā taha e rua.
-x^{2}-4x=0
Pahekotia te -3x me -x, ka -4x.
\frac{-x^{2}-4x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{4}{-1}\right)x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+4x=\frac{0}{-1}
Whakawehe -4 ki te -1.
x^{2}+4x=0
Whakawehe 0 ki te -1.
x^{2}+4x+2^{2}=2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=4
Pūrua 2.
\left(x+2\right)^{2}=4
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=2 x+2=-2
Whakarūnātia.
x=0 x=-4
Me tango 2 mai i ngā taha e rua o te whārite.
x=-4
Tē taea kia ōrite te tāupe x ki 0.