Whakaoti mō x
x=-3
x=7
x=-2
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-7\right)\left(x+3\right)\left(x^{2}-4\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -7,1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+7\right).
\left(x^{2}-4x-21\right)\left(x^{2}-4\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x-7 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{4}-25x^{2}-4x^{3}+16x+84=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}-4x-21 ki te x^{2}-4 ka whakakotahi i ngā kupu rite.
x^{4}-4x^{3}-25x^{2}+16x+84=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±84,±42,±28,±21,±14,±12,±7,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 84, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}-2x^{2}-29x-42=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}-4x^{3}-25x^{2}+16x+84 ki te x-2, kia riro ko x^{3}-2x^{2}-29x-42. Whakaotihia te whārite ina ōrite te hua ki te 0.
±42,±21,±14,±7,±6,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -42, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-4x-21=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-2x^{2}-29x-42 ki te x+2, kia riro ko x^{2}-4x-21. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -4 mō te b, me te -21 mō te c i te ture pūrua.
x=\frac{4±10}{2}
Mahia ngā tātaitai.
x=-3 x=7
Whakaotia te whārite x^{2}-4x-21=0 ina he tōrunga te ±, ina he tōraro te ±.
x=2 x=-2 x=-3 x=7
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}