Whakaoti mō x
x=-\frac{5}{18}\approx -0.277777778
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6\left(x-4\right)=-\left(3x-1\right)\times 14
Tē taea kia ōrite te tāupe x ki \frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(3x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o -3x+1,6.
-6x+24=-\left(3x-1\right)\times 14
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te x-4.
-6x+24=-\left(42x-14\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te 14.
-6x+24=-42x+14
Hei kimi i te tauaro o 42x-14, kimihia te tauaro o ia taurangi.
-6x+24+42x=14
Me tāpiri te 42x ki ngā taha e rua.
36x+24=14
Pahekotia te -6x me 42x, ka 36x.
36x=14-24
Tangohia te 24 mai i ngā taha e rua.
36x=-10
Tangohia te 24 i te 14, ka -10.
x=\frac{-10}{36}
Whakawehea ngā taha e rua ki te 36.
x=-\frac{5}{18}
Whakahekea te hautanga \frac{-10}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}