Whakaoti mō x
x=\frac{2\left(2y+7\right)}{y+42}
y\neq 0\text{ and }y\neq -42
Whakaoti mō y
y=-\frac{14\left(3x-1\right)}{x-4}
x\neq \frac{1}{3}\text{ and }x\neq 4
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { ( x - 4 ) } { ( - 3 x + 1 ) } = \frac { 14 } { y }
Tohaina
Kua tāruatia ki te papatopenga
-y\left(x-4\right)=\left(3x-1\right)\times 14
Tē taea kia ōrite te tāupe x ki \frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(3x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o -3x+1,y.
-yx+4y=\left(3x-1\right)\times 14
Whakamahia te āhuatanga tohatoha hei whakarea te -y ki te x-4.
-yx+4y=42x-14
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te 14.
-yx+4y-42x=-14
Tangohia te 42x mai i ngā taha e rua.
-yx-42x=-14-4y
Tangohia te 4y mai i ngā taha e rua.
\left(-y-42\right)x=-14-4y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-y-42\right)x=-4y-14
He hanga arowhānui tō te whārite.
\frac{\left(-y-42\right)x}{-y-42}=\frac{-4y-14}{-y-42}
Whakawehea ngā taha e rua ki te -y-42.
x=\frac{-4y-14}{-y-42}
Mā te whakawehe ki te -y-42 ka wetekia te whakareanga ki te -y-42.
x=\frac{2\left(2y+7\right)}{y+42}
Whakawehe -4y-14 ki te -y-42.
x=\frac{2\left(2y+7\right)}{y+42}\text{, }x\neq \frac{1}{3}
Tē taea kia ōrite te tāupe x ki \frac{1}{3}.
-y\left(x-4\right)=\left(3x-1\right)\times 14
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(3x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o -3x+1,y.
-yx+4y=\left(3x-1\right)\times 14
Whakamahia te āhuatanga tohatoha hei whakarea te -y ki te x-4.
-yx+4y=42x-14
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te 14.
\left(-x+4\right)y=42x-14
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(4-x\right)y=42x-14
He hanga arowhānui tō te whārite.
\frac{\left(4-x\right)y}{4-x}=\frac{42x-14}{4-x}
Whakawehea ngā taha e rua ki te -x+4.
y=\frac{42x-14}{4-x}
Mā te whakawehe ki te -x+4 ka wetekia te whakareanga ki te -x+4.
y=\frac{14\left(3x-1\right)}{4-x}
Whakawehe 42x-14 ki te -x+4.
y=\frac{14\left(3x-1\right)}{4-x}\text{, }y\neq 0
Tē taea kia ōrite te tāupe y ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}