Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-y\left(x-4\right)=\left(3x-1\right)\times 14
Tē taea kia ōrite te tāupe x ki \frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(3x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o -3x+1,y.
-yx+4y=\left(3x-1\right)\times 14
Whakamahia te āhuatanga tohatoha hei whakarea te -y ki te x-4.
-yx+4y=42x-14
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te 14.
-yx+4y-42x=-14
Tangohia te 42x mai i ngā taha e rua.
-yx-42x=-14-4y
Tangohia te 4y mai i ngā taha e rua.
\left(-y-42\right)x=-14-4y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-y-42\right)x=-4y-14
He hanga arowhānui tō te whārite.
\frac{\left(-y-42\right)x}{-y-42}=\frac{-4y-14}{-y-42}
Whakawehea ngā taha e rua ki te -y-42.
x=\frac{-4y-14}{-y-42}
Mā te whakawehe ki te -y-42 ka wetekia te whakareanga ki te -y-42.
x=\frac{2\left(2y+7\right)}{y+42}
Whakawehe -4y-14 ki te -y-42.
x=\frac{2\left(2y+7\right)}{y+42}\text{, }x\neq \frac{1}{3}
Tē taea kia ōrite te tāupe x ki \frac{1}{3}.
-y\left(x-4\right)=\left(3x-1\right)\times 14
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(3x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o -3x+1,y.
-yx+4y=\left(3x-1\right)\times 14
Whakamahia te āhuatanga tohatoha hei whakarea te -y ki te x-4.
-yx+4y=42x-14
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te 14.
\left(-x+4\right)y=42x-14
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(4-x\right)y=42x-14
He hanga arowhānui tō te whārite.
\frac{\left(4-x\right)y}{4-x}=\frac{42x-14}{4-x}
Whakawehea ngā taha e rua ki te -x+4.
y=\frac{42x-14}{4-x}
Mā te whakawehe ki te -x+4 ka wetekia te whakareanga ki te -x+4.
y=\frac{14\left(3x-1\right)}{4-x}
Whakawehe 42x-14 ki te -x+4.
y=\frac{14\left(3x-1\right)}{4-x}\text{, }y\neq 0
Tē taea kia ōrite te tāupe y ki 0.