Whakaoti mō x
x=\frac{\sqrt{10}}{5}+4\approx 4.632455532
x=-\frac{\sqrt{10}}{5}+4\approx 3.367544468
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x-15\right)\left(x-2\right)-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-5\right)\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x-5,3.
3x^{2}-21x+30-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-15 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-21x+30-\left(3x^{2}-21x+36\right)=10\left(x-5\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-9 ki te x-4 ka whakakotahi i ngā kupu rite.
3x^{2}-21x+30-3x^{2}+21x-36=10\left(x-5\right)\left(x-3\right)
Hei kimi i te tauaro o 3x^{2}-21x+36, kimihia te tauaro o ia taurangi.
-21x+30+21x-36=10\left(x-5\right)\left(x-3\right)
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
30-36=10\left(x-5\right)\left(x-3\right)
Pahekotia te -21x me 21x, ka 0.
-6=10\left(x-5\right)\left(x-3\right)
Tangohia te 36 i te 30, ka -6.
-6=\left(10x-50\right)\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x-5.
-6=10x^{2}-80x+150
Whakamahia te āhuatanga tuaritanga hei whakarea te 10x-50 ki te x-3 ka whakakotahi i ngā kupu rite.
10x^{2}-80x+150=-6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
10x^{2}-80x+150+6=0
Me tāpiri te 6 ki ngā taha e rua.
10x^{2}-80x+156=0
Tāpirihia te 150 ki te 6, ka 156.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 10\times 156}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, -80 mō b, me 156 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 10\times 156}}{2\times 10}
Pūrua -80.
x=\frac{-\left(-80\right)±\sqrt{6400-40\times 156}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-\left(-80\right)±\sqrt{6400-6240}}{2\times 10}
Whakareatia -40 ki te 156.
x=\frac{-\left(-80\right)±\sqrt{160}}{2\times 10}
Tāpiri 6400 ki te -6240.
x=\frac{-\left(-80\right)±4\sqrt{10}}{2\times 10}
Tuhia te pūtakerua o te 160.
x=\frac{80±4\sqrt{10}}{2\times 10}
Ko te tauaro o -80 ko 80.
x=\frac{80±4\sqrt{10}}{20}
Whakareatia 2 ki te 10.
x=\frac{4\sqrt{10}+80}{20}
Nā, me whakaoti te whārite x=\frac{80±4\sqrt{10}}{20} ina he tāpiri te ±. Tāpiri 80 ki te 4\sqrt{10}.
x=\frac{\sqrt{10}}{5}+4
Whakawehe 80+4\sqrt{10} ki te 20.
x=\frac{80-4\sqrt{10}}{20}
Nā, me whakaoti te whārite x=\frac{80±4\sqrt{10}}{20} ina he tango te ±. Tango 4\sqrt{10} mai i 80.
x=-\frac{\sqrt{10}}{5}+4
Whakawehe 80-4\sqrt{10} ki te 20.
x=\frac{\sqrt{10}}{5}+4 x=-\frac{\sqrt{10}}{5}+4
Kua oti te whārite te whakatau.
\left(3x-15\right)\left(x-2\right)-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-5\right)\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x-5,3.
3x^{2}-21x+30-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-15 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-21x+30-\left(3x^{2}-21x+36\right)=10\left(x-5\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-9 ki te x-4 ka whakakotahi i ngā kupu rite.
3x^{2}-21x+30-3x^{2}+21x-36=10\left(x-5\right)\left(x-3\right)
Hei kimi i te tauaro o 3x^{2}-21x+36, kimihia te tauaro o ia taurangi.
-21x+30+21x-36=10\left(x-5\right)\left(x-3\right)
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
30-36=10\left(x-5\right)\left(x-3\right)
Pahekotia te -21x me 21x, ka 0.
-6=10\left(x-5\right)\left(x-3\right)
Tangohia te 36 i te 30, ka -6.
-6=\left(10x-50\right)\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x-5.
-6=10x^{2}-80x+150
Whakamahia te āhuatanga tuaritanga hei whakarea te 10x-50 ki te x-3 ka whakakotahi i ngā kupu rite.
10x^{2}-80x+150=-6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
10x^{2}-80x=-6-150
Tangohia te 150 mai i ngā taha e rua.
10x^{2}-80x=-156
Tangohia te 150 i te -6, ka -156.
\frac{10x^{2}-80x}{10}=-\frac{156}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}+\left(-\frac{80}{10}\right)x=-\frac{156}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}-8x=-\frac{156}{10}
Whakawehe -80 ki te 10.
x^{2}-8x=-\frac{78}{5}
Whakahekea te hautanga \frac{-156}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-8x+\left(-4\right)^{2}=-\frac{78}{5}+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-\frac{78}{5}+16
Pūrua -4.
x^{2}-8x+16=\frac{2}{5}
Tāpiri -\frac{78}{5} ki te 16.
\left(x-4\right)^{2}=\frac{2}{5}
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{2}{5}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=\frac{\sqrt{10}}{5} x-4=-\frac{\sqrt{10}}{5}
Whakarūnātia.
x=\frac{\sqrt{10}}{5}+4 x=-\frac{\sqrt{10}}{5}+4
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}