Aromātai
x^{21}
Kimi Pārōnaki e ai ki x
21x^{20}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x^{9}\right)^{3}\times \frac{1}{x^{6}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
x^{9\times 3}x^{6\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
x^{27}x^{6\left(-1\right)}
Whakareatia 9 ki te 3.
x^{27}x^{-6}
Whakareatia 6 ki te -1.
x^{27-6}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
x^{21}
Tāpirihia ngā taupū 27 me -6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{27}}{x^{6}})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 9 me te 3 kia riro ai te 27.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{21})
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 6 i te 27 kia riro ai te 21.
21x^{21-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
21x^{20}
Tango 1 mai i 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}