Aromātai
\frac{9-2x-x^{2}}{x+4}
Whakaroha
\frac{9-2x-x^{2}}{x+4}
Graph
Pātaitai
Polynomial
\frac { ( x + 4 ) } { x ^ { 2 } + 8 x + 16 } - \frac { x ^ { 2 } - 4 } { ( x + 2 ) } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{x+4}{\left(x+4\right)^{2}}-\frac{x^{2}-4}{x+2}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x+4}{x^{2}+8x+16}.
\frac{1}{x+4}-\frac{x^{2}-4}{x+2}
Me whakakore tahi te x+4 i te taurunga me te tauraro.
\frac{1}{x+4}-\frac{\left(x-2\right)\left(x+2\right)}{x+2}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-4}{x+2}.
\frac{1}{x+4}-\left(x-2\right)
Me whakakore tahi te x+2 i te taurunga me te tauraro.
\frac{1}{x+4}-x+2
Hei kimi i te tauaro o x-2, kimihia te tauaro o ia taurangi.
\frac{1}{x+4}+\frac{\left(-x+2\right)\left(x+4\right)}{x+4}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -x+2 ki te \frac{x+4}{x+4}.
\frac{1+\left(-x+2\right)\left(x+4\right)}{x+4}
Tā te mea he rite te tauraro o \frac{1}{x+4} me \frac{\left(-x+2\right)\left(x+4\right)}{x+4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1-x^{2}-4x+2x+8}{x+4}
Mahia ngā whakarea i roto o 1+\left(-x+2\right)\left(x+4\right).
\frac{9-x^{2}-2x}{x+4}
Whakakotahitia ngā kupu rite i 1-x^{2}-4x+2x+8.
\frac{x+4}{\left(x+4\right)^{2}}-\frac{x^{2}-4}{x+2}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x+4}{x^{2}+8x+16}.
\frac{1}{x+4}-\frac{x^{2}-4}{x+2}
Me whakakore tahi te x+4 i te taurunga me te tauraro.
\frac{1}{x+4}-\frac{\left(x-2\right)\left(x+2\right)}{x+2}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-4}{x+2}.
\frac{1}{x+4}-\left(x-2\right)
Me whakakore tahi te x+2 i te taurunga me te tauraro.
\frac{1}{x+4}-x+2
Hei kimi i te tauaro o x-2, kimihia te tauaro o ia taurangi.
\frac{1}{x+4}+\frac{\left(-x+2\right)\left(x+4\right)}{x+4}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -x+2 ki te \frac{x+4}{x+4}.
\frac{1+\left(-x+2\right)\left(x+4\right)}{x+4}
Tā te mea he rite te tauraro o \frac{1}{x+4} me \frac{\left(-x+2\right)\left(x+4\right)}{x+4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1-x^{2}-4x+2x+8}{x+4}
Mahia ngā whakarea i roto o 1+\left(-x+2\right)\left(x+4\right).
\frac{9-x^{2}-2x}{x+4}
Whakakotahitia ngā kupu rite i 1-x^{2}-4x+2x+8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}