Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te x+4 ka whakakotahi i ngā kupu rite.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Whakaarohia te \left(x+1\right)\left(x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Me whakarea te \frac{x^{2}+7x+12}{x^{2}-1} ki te \frac{x^{2}+x^{3}}{x+4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Me whakarea te \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} ki te \frac{x-1}{3x+9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x^{2}}{3}
Me whakakore tahi te \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) i te taurunga me te tauraro.
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te x+4 ka whakakotahi i ngā kupu rite.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Whakaarohia te \left(x+1\right)\left(x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Me whakarea te \frac{x^{2}+7x+12}{x^{2}-1} ki te \frac{x^{2}+x^{3}}{x+4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Me whakarea te \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} ki te \frac{x-1}{3x+9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x^{2}}{3}
Me whakakore tahi te \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) i te taurunga me te tauraro.