Whakaoti mō x
x = \frac{13}{4} = 3\frac{1}{4} = 3.25
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x-3\right)\left(x+3\right)+3\left(x-2\right)\left(x-1\right)\left(-\frac{8}{3}\right)=\left(3x-6\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,3,x-1.
3x^{2}+6x-9+3\left(x-2\right)\left(x-1\right)\left(-\frac{8}{3}\right)=\left(3x-6\right)\left(x+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-3 ki te x+3 ka whakakotahi i ngā kupu rite.
3x^{2}+6x-9-8\left(x-2\right)\left(x-1\right)=\left(3x-6\right)\left(x+2\right)
Whakareatia te 3 ki te -\frac{8}{3}, ka -8.
3x^{2}+6x-9+\left(-8x+16\right)\left(x-1\right)=\left(3x-6\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -8 ki te x-2.
3x^{2}+6x-9-8x^{2}+24x-16=\left(3x-6\right)\left(x+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -8x+16 ki te x-1 ka whakakotahi i ngā kupu rite.
-5x^{2}+6x-9+24x-16=\left(3x-6\right)\left(x+2\right)
Pahekotia te 3x^{2} me -8x^{2}, ka -5x^{2}.
-5x^{2}+30x-9-16=\left(3x-6\right)\left(x+2\right)
Pahekotia te 6x me 24x, ka 30x.
-5x^{2}+30x-25=\left(3x-6\right)\left(x+2\right)
Tangohia te 16 i te -9, ka -25.
-5x^{2}+30x-25=3x^{2}-12
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-6 ki te x+2 ka whakakotahi i ngā kupu rite.
-5x^{2}+30x-25-3x^{2}=-12
Tangohia te 3x^{2} mai i ngā taha e rua.
-8x^{2}+30x-25=-12
Pahekotia te -5x^{2} me -3x^{2}, ka -8x^{2}.
-8x^{2}+30x-25+12=0
Me tāpiri te 12 ki ngā taha e rua.
-8x^{2}+30x-13=0
Tāpirihia te -25 ki te 12, ka -13.
x=\frac{-30±\sqrt{30^{2}-4\left(-8\right)\left(-13\right)}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, 30 mō b, me -13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-8\right)\left(-13\right)}}{2\left(-8\right)}
Pūrua 30.
x=\frac{-30±\sqrt{900+32\left(-13\right)}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
x=\frac{-30±\sqrt{900-416}}{2\left(-8\right)}
Whakareatia 32 ki te -13.
x=\frac{-30±\sqrt{484}}{2\left(-8\right)}
Tāpiri 900 ki te -416.
x=\frac{-30±22}{2\left(-8\right)}
Tuhia te pūtakerua o te 484.
x=\frac{-30±22}{-16}
Whakareatia 2 ki te -8.
x=-\frac{8}{-16}
Nā, me whakaoti te whārite x=\frac{-30±22}{-16} ina he tāpiri te ±. Tāpiri -30 ki te 22.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-8}{-16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=-\frac{52}{-16}
Nā, me whakaoti te whārite x=\frac{-30±22}{-16} ina he tango te ±. Tango 22 mai i -30.
x=\frac{13}{4}
Whakahekea te hautanga \frac{-52}{-16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{1}{2} x=\frac{13}{4}
Kua oti te whārite te whakatau.
\left(3x-3\right)\left(x+3\right)+3\left(x-2\right)\left(x-1\right)\left(-\frac{8}{3}\right)=\left(3x-6\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,3,x-1.
3x^{2}+6x-9+3\left(x-2\right)\left(x-1\right)\left(-\frac{8}{3}\right)=\left(3x-6\right)\left(x+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-3 ki te x+3 ka whakakotahi i ngā kupu rite.
3x^{2}+6x-9-8\left(x-2\right)\left(x-1\right)=\left(3x-6\right)\left(x+2\right)
Whakareatia te 3 ki te -\frac{8}{3}, ka -8.
3x^{2}+6x-9+\left(-8x+16\right)\left(x-1\right)=\left(3x-6\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -8 ki te x-2.
3x^{2}+6x-9-8x^{2}+24x-16=\left(3x-6\right)\left(x+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -8x+16 ki te x-1 ka whakakotahi i ngā kupu rite.
-5x^{2}+6x-9+24x-16=\left(3x-6\right)\left(x+2\right)
Pahekotia te 3x^{2} me -8x^{2}, ka -5x^{2}.
-5x^{2}+30x-9-16=\left(3x-6\right)\left(x+2\right)
Pahekotia te 6x me 24x, ka 30x.
-5x^{2}+30x-25=\left(3x-6\right)\left(x+2\right)
Tangohia te 16 i te -9, ka -25.
-5x^{2}+30x-25=3x^{2}-12
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-6 ki te x+2 ka whakakotahi i ngā kupu rite.
-5x^{2}+30x-25-3x^{2}=-12
Tangohia te 3x^{2} mai i ngā taha e rua.
-8x^{2}+30x-25=-12
Pahekotia te -5x^{2} me -3x^{2}, ka -8x^{2}.
-8x^{2}+30x=-12+25
Me tāpiri te 25 ki ngā taha e rua.
-8x^{2}+30x=13
Tāpirihia te -12 ki te 25, ka 13.
\frac{-8x^{2}+30x}{-8}=\frac{13}{-8}
Whakawehea ngā taha e rua ki te -8.
x^{2}+\frac{30}{-8}x=\frac{13}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x^{2}-\frac{15}{4}x=\frac{13}{-8}
Whakahekea te hautanga \frac{30}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{15}{4}x=-\frac{13}{8}
Whakawehe 13 ki te -8.
x^{2}-\frac{15}{4}x+\left(-\frac{15}{8}\right)^{2}=-\frac{13}{8}+\left(-\frac{15}{8}\right)^{2}
Whakawehea te -\frac{15}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{8}. Nā, tāpiria te pūrua o te -\frac{15}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{15}{4}x+\frac{225}{64}=-\frac{13}{8}+\frac{225}{64}
Pūruatia -\frac{15}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{121}{64}
Tāpiri -\frac{13}{8} ki te \frac{225}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{15}{8}\right)^{2}=\frac{121}{64}
Tauwehea x^{2}-\frac{15}{4}x+\frac{225}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{8}=\frac{11}{8} x-\frac{15}{8}=-\frac{11}{8}
Whakarūnātia.
x=\frac{13}{4} x=\frac{1}{2}
Me tāpiri \frac{15}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}