Whakaoti mō x
x=2
x=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(x+3\right)^{2}+10-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2\left(x^{2}+6x+9\right)+10-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
2x^{2}+12x+18+10-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}+6x+9.
2x^{2}+12x+28-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Tāpirihia te 18 ki te 10, ka 28.
2x^{2}+12x+28-2\left(9x^{2}-6x+1\right)=5x\left(2x-3\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-1\right)^{2}.
2x^{2}+12x+28-18x^{2}+12x-2=5x\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 9x^{2}-6x+1.
-16x^{2}+12x+28+12x-2=5x\left(2x-3\right)
Pahekotia te 2x^{2} me -18x^{2}, ka -16x^{2}.
-16x^{2}+24x+28-2=5x\left(2x-3\right)
Pahekotia te 12x me 12x, ka 24x.
-16x^{2}+24x+26=5x\left(2x-3\right)
Tangohia te 2 i te 28, ka 26.
-16x^{2}+24x+26=10x^{2}-15x
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te 2x-3.
-16x^{2}+24x+26-10x^{2}=-15x
Tangohia te 10x^{2} mai i ngā taha e rua.
-26x^{2}+24x+26=-15x
Pahekotia te -16x^{2} me -10x^{2}, ka -26x^{2}.
-26x^{2}+24x+26+15x=0
Me tāpiri te 15x ki ngā taha e rua.
-26x^{2}+39x+26=0
Pahekotia te 24x me 15x, ka 39x.
-2x^{2}+3x+2=0
Whakawehea ngā taha e rua ki te 13.
a+b=3 ab=-2\times 2=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -2x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,4 -2,2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
-1+4=3 -2+2=0
Tātaihia te tapeke mō ia takirua.
a=4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(-2x^{2}+4x\right)+\left(-x+2\right)
Tuhia anō te -2x^{2}+3x+2 hei \left(-2x^{2}+4x\right)+\left(-x+2\right).
2x\left(-x+2\right)-x+2
Whakatauwehea atu 2x i te -2x^{2}+4x.
\left(-x+2\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi -x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te -x+2=0 me te 2x+1=0.
2\left(x+3\right)^{2}+10-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2\left(x^{2}+6x+9\right)+10-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
2x^{2}+12x+18+10-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}+6x+9.
2x^{2}+12x+28-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Tāpirihia te 18 ki te 10, ka 28.
2x^{2}+12x+28-2\left(9x^{2}-6x+1\right)=5x\left(2x-3\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-1\right)^{2}.
2x^{2}+12x+28-18x^{2}+12x-2=5x\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 9x^{2}-6x+1.
-16x^{2}+12x+28+12x-2=5x\left(2x-3\right)
Pahekotia te 2x^{2} me -18x^{2}, ka -16x^{2}.
-16x^{2}+24x+28-2=5x\left(2x-3\right)
Pahekotia te 12x me 12x, ka 24x.
-16x^{2}+24x+26=5x\left(2x-3\right)
Tangohia te 2 i te 28, ka 26.
-16x^{2}+24x+26=10x^{2}-15x
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te 2x-3.
-16x^{2}+24x+26-10x^{2}=-15x
Tangohia te 10x^{2} mai i ngā taha e rua.
-26x^{2}+24x+26=-15x
Pahekotia te -16x^{2} me -10x^{2}, ka -26x^{2}.
-26x^{2}+24x+26+15x=0
Me tāpiri te 15x ki ngā taha e rua.
-26x^{2}+39x+26=0
Pahekotia te 24x me 15x, ka 39x.
x=\frac{-39±\sqrt{39^{2}-4\left(-26\right)\times 26}}{2\left(-26\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -26 mō a, 39 mō b, me 26 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-39±\sqrt{1521-4\left(-26\right)\times 26}}{2\left(-26\right)}
Pūrua 39.
x=\frac{-39±\sqrt{1521+104\times 26}}{2\left(-26\right)}
Whakareatia -4 ki te -26.
x=\frac{-39±\sqrt{1521+2704}}{2\left(-26\right)}
Whakareatia 104 ki te 26.
x=\frac{-39±\sqrt{4225}}{2\left(-26\right)}
Tāpiri 1521 ki te 2704.
x=\frac{-39±65}{2\left(-26\right)}
Tuhia te pūtakerua o te 4225.
x=\frac{-39±65}{-52}
Whakareatia 2 ki te -26.
x=\frac{26}{-52}
Nā, me whakaoti te whārite x=\frac{-39±65}{-52} ina he tāpiri te ±. Tāpiri -39 ki te 65.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{26}{-52} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 26.
x=-\frac{104}{-52}
Nā, me whakaoti te whārite x=\frac{-39±65}{-52} ina he tango te ±. Tango 65 mai i -39.
x=2
Whakawehe -104 ki te -52.
x=-\frac{1}{2} x=2
Kua oti te whārite te whakatau.
2\left(x+3\right)^{2}+10-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2\left(x^{2}+6x+9\right)+10-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
2x^{2}+12x+18+10-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}+6x+9.
2x^{2}+12x+28-2\left(3x-1\right)^{2}=5x\left(2x-3\right)
Tāpirihia te 18 ki te 10, ka 28.
2x^{2}+12x+28-2\left(9x^{2}-6x+1\right)=5x\left(2x-3\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-1\right)^{2}.
2x^{2}+12x+28-18x^{2}+12x-2=5x\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 9x^{2}-6x+1.
-16x^{2}+12x+28+12x-2=5x\left(2x-3\right)
Pahekotia te 2x^{2} me -18x^{2}, ka -16x^{2}.
-16x^{2}+24x+28-2=5x\left(2x-3\right)
Pahekotia te 12x me 12x, ka 24x.
-16x^{2}+24x+26=5x\left(2x-3\right)
Tangohia te 2 i te 28, ka 26.
-16x^{2}+24x+26=10x^{2}-15x
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te 2x-3.
-16x^{2}+24x+26-10x^{2}=-15x
Tangohia te 10x^{2} mai i ngā taha e rua.
-26x^{2}+24x+26=-15x
Pahekotia te -16x^{2} me -10x^{2}, ka -26x^{2}.
-26x^{2}+24x+26+15x=0
Me tāpiri te 15x ki ngā taha e rua.
-26x^{2}+39x+26=0
Pahekotia te 24x me 15x, ka 39x.
-26x^{2}+39x=-26
Tangohia te 26 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-26x^{2}+39x}{-26}=-\frac{26}{-26}
Whakawehea ngā taha e rua ki te -26.
x^{2}+\frac{39}{-26}x=-\frac{26}{-26}
Mā te whakawehe ki te -26 ka wetekia te whakareanga ki te -26.
x^{2}-\frac{3}{2}x=-\frac{26}{-26}
Whakahekea te hautanga \frac{39}{-26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 13.
x^{2}-\frac{3}{2}x=1
Whakawehe -26 ki te -26.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=1+\left(-\frac{3}{4}\right)^{2}
Whakawehea te -\frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{4}. Nā, tāpiria te pūrua o te -\frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{2}x+\frac{9}{16}=1+\frac{9}{16}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{25}{16}
Tāpiri 1 ki te \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{25}{16}
Tauwehea x^{2}-\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{4}=\frac{5}{4} x-\frac{3}{4}=-\frac{5}{4}
Whakarūnātia.
x=2 x=-\frac{1}{2}
Me tāpiri \frac{3}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}