Whakaoti mō x
x = \frac{6 \sqrt{5}}{5} \approx 2.683281573
x = -\frac{6 \sqrt{5}}{5} \approx -2.683281573
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(x+2\right)^{2}+2\left(x^{2}-18\right)=12x+12
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3\left(x^{2}+4x+4\right)+2\left(x^{2}-18\right)=12x+12
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
3x^{2}+12x+12+2\left(x^{2}-18\right)=12x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}+4x+4.
3x^{2}+12x+12+2x^{2}-36=12x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-18.
5x^{2}+12x+12-36=12x+12
Pahekotia te 3x^{2} me 2x^{2}, ka 5x^{2}.
5x^{2}+12x-24=12x+12
Tangohia te 36 i te 12, ka -24.
5x^{2}+12x-24-12x=12
Tangohia te 12x mai i ngā taha e rua.
5x^{2}-24=12
Pahekotia te 12x me -12x, ka 0.
5x^{2}=12+24
Me tāpiri te 24 ki ngā taha e rua.
5x^{2}=36
Tāpirihia te 12 ki te 24, ka 36.
x^{2}=\frac{36}{5}
Whakawehea ngā taha e rua ki te 5.
x=\frac{6\sqrt{5}}{5} x=-\frac{6\sqrt{5}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3\left(x+2\right)^{2}+2\left(x^{2}-18\right)=12x+12
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3\left(x^{2}+4x+4\right)+2\left(x^{2}-18\right)=12x+12
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
3x^{2}+12x+12+2\left(x^{2}-18\right)=12x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}+4x+4.
3x^{2}+12x+12+2x^{2}-36=12x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-18.
5x^{2}+12x+12-36=12x+12
Pahekotia te 3x^{2} me 2x^{2}, ka 5x^{2}.
5x^{2}+12x-24=12x+12
Tangohia te 36 i te 12, ka -24.
5x^{2}+12x-24-12x=12
Tangohia te 12x mai i ngā taha e rua.
5x^{2}-24=12
Pahekotia te 12x me -12x, ka 0.
5x^{2}-24-12=0
Tangohia te 12 mai i ngā taha e rua.
5x^{2}-36=0
Tangohia te 12 i te -24, ka -36.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-36\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-36\right)}}{2\times 5}
Pūrua 0.
x=\frac{0±\sqrt{-20\left(-36\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{0±\sqrt{720}}{2\times 5}
Whakareatia -20 ki te -36.
x=\frac{0±12\sqrt{5}}{2\times 5}
Tuhia te pūtakerua o te 720.
x=\frac{0±12\sqrt{5}}{10}
Whakareatia 2 ki te 5.
x=\frac{6\sqrt{5}}{5}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{5}}{10} ina he tāpiri te ±.
x=-\frac{6\sqrt{5}}{5}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{5}}{10} ina he tango te ±.
x=\frac{6\sqrt{5}}{5} x=-\frac{6\sqrt{5}}{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}