Aromātai
\frac{2}{x^{2}-1}
Whakaroha
\frac{2}{x^{2}-1}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { ( x + 1 ) - ( x - 1 ) } { ( x - 1 ) ( x + 1 ) }
Tohaina
Kua tāruatia ki te papatopenga
\frac{x+1-x-\left(-1\right)}{\left(x-1\right)\left(x+1\right)}
Hei kimi i te tauaro o x-1, kimihia te tauaro o ia taurangi.
\frac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}
Ko te tauaro o -1 ko 1.
\frac{1+1}{\left(x-1\right)\left(x+1\right)}
Pahekotia te x me -x, ka 0.
\frac{2}{\left(x-1\right)\left(x+1\right)}
Tāpirihia te 1 ki te 1, ka 2.
\frac{2}{x^{2}-1^{2}}
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2}{x^{2}-1}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{x+1-x-\left(-1\right)}{\left(x-1\right)\left(x+1\right)}
Hei kimi i te tauaro o x-1, kimihia te tauaro o ia taurangi.
\frac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}
Ko te tauaro o -1 ko 1.
\frac{1+1}{\left(x-1\right)\left(x+1\right)}
Pahekotia te x me -x, ka 0.
\frac{2}{\left(x-1\right)\left(x+1\right)}
Tāpirihia te 1 ki te 1, ka 2.
\frac{2}{x^{2}-1^{2}}
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2}{x^{2}-1}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}