Whakaoti mō x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=2
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { ( x + 1 ) ( x - 3 ) } { 2 } + x = \frac { x } { 4 }
Tohaina
Kua tāruatia ki te papatopenga
2\left(x+1\right)\left(x-3\right)+4x=x
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
\left(2x+2\right)\left(x-3\right)+4x=x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
2x^{2}-4x-6+4x=x
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-6=x
Pahekotia te -4x me 4x, ka 0.
2x^{2}-6-x=0
Tangohia te x mai i ngā taha e rua.
2x^{2}-x-6=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-1 ab=2\left(-6\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-4 b=3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
Tuhia anō te 2x^{2}-x-6 hei \left(2x^{2}-4x\right)+\left(3x-6\right).
2x\left(x-2\right)+3\left(x-2\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-2\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 2x+3=0.
2\left(x+1\right)\left(x-3\right)+4x=x
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
\left(2x+2\right)\left(x-3\right)+4x=x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
2x^{2}-4x-6+4x=x
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-6=x
Pahekotia te -4x me 4x, ka 0.
2x^{2}-6-x=0
Tangohia te x mai i ngā taha e rua.
2x^{2}-x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -1 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Whakareatia -8 ki te -6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Tāpiri 1 ki te 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Tuhia te pūtakerua o te 49.
x=\frac{1±7}{2\times 2}
Ko te tauaro o -1 ko 1.
x=\frac{1±7}{4}
Whakareatia 2 ki te 2.
x=\frac{8}{4}
Nā, me whakaoti te whārite x=\frac{1±7}{4} ina he tāpiri te ±. Tāpiri 1 ki te 7.
x=2
Whakawehe 8 ki te 4.
x=-\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{1±7}{4} ina he tango te ±. Tango 7 mai i 1.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=2 x=-\frac{3}{2}
Kua oti te whārite te whakatau.
2\left(x+1\right)\left(x-3\right)+4x=x
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
\left(2x+2\right)\left(x-3\right)+4x=x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
2x^{2}-4x-6+4x=x
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-6=x
Pahekotia te -4x me 4x, ka 0.
2x^{2}-6-x=0
Tangohia te x mai i ngā taha e rua.
2x^{2}-x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{2x^{2}-x}{2}=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{1}{2}x=\frac{6}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{1}{2}x=3
Whakawehe 6 ki te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Tāpiri 3 ki te \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
Whakarūnātia.
x=2 x=-\frac{3}{2}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}