Aromātai
\frac{pq^{2}}{3m}
Kimi Pārōnaki e ai ki q
\frac{2pq}{3m}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(q\times 1p^{2}\right)^{2}}{3mp^{3}q^{0}}
Tātaihia te m mā te pū o 0, kia riro ko 1.
\frac{q^{2}\times 1^{2}\left(p^{2}\right)^{2}}{3mp^{3}q^{0}}
Whakarohaina te \left(q\times 1p^{2}\right)^{2}.
\frac{q^{2}\times 1^{2}p^{4}}{3mp^{3}q^{0}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{q^{2}\times 1p^{4}}{3mp^{3}q^{0}}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{q^{2}\times 1p^{4}}{3mp^{3}\times 1}
Tātaihia te q mā te pū o 0, kia riro ko 1.
\frac{q^{2}\times 1p^{4}}{3mp^{3}}
Whakareatia te 3 ki te 1, ka 3.
\frac{pq^{2}}{3m}
Me whakakore tahi te p^{3} i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}