Tīpoka ki ngā ihirangi matua
Whakaoti mō f (complex solution)
Tick mark Image
Whakaoti mō f
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(e^{x}-e^{-x}\right)\sin(x)=fx
Whakareatia ngā taha e rua o te whārite ki te x.
fx=\left(e^{x}-e^{-x}\right)\sin(x)
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
fx=e^{x}\sin(x)-e^{-x}\sin(x)
Whakamahia te āhuatanga tohatoha hei whakarea te e^{x}-e^{-x} ki te \sin(x).
xf=\sin(x)e^{x}-\frac{\sin(x)}{e^{x}}
He hanga arowhānui tō te whārite.
\frac{xf}{x}=\frac{\sin(x)\left(-\frac{1}{e^{x}}+e^{x}\right)}{x}
Whakawehea ngā taha e rua ki te x.
f=\frac{\sin(x)\left(-\frac{1}{e^{x}}+e^{x}\right)}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
\left(e^{x}-e^{-x}\right)\sin(x)=fx
Whakareatia ngā taha e rua o te whārite ki te x.
fx=\left(e^{x}-e^{-x}\right)\sin(x)
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
fx=e^{x}\sin(x)-e^{-x}\sin(x)
Whakamahia te āhuatanga tohatoha hei whakarea te e^{x}-e^{-x} ki te \sin(x).
xf=\sin(x)e^{x}-\frac{\sin(x)}{e^{x}}
He hanga arowhānui tō te whārite.
\frac{xf}{x}=\frac{\sin(x)\left(-\frac{1}{e^{x}}+e^{x}\right)}{x}
Whakawehea ngā taha e rua ki te x.
f=\frac{\sin(x)\left(-\frac{1}{e^{x}}+e^{x}\right)}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
f=\frac{\sin(x)\left(e^{2x}-1\right)}{xe^{x}}
Whakawehe \sin(x)\left(e^{x}-\frac{1}{e^{x}}\right) ki te x.