Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{a^{10}}{\left(a^{3}\right)^{4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 2 kia riro ai te 10.
\frac{a^{10}}{a^{12}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 4 kia riro ai te 12.
\frac{1}{a^{2}}
Tuhia anō te a^{12} hei a^{10}a^{2}. Me whakakore tahi te a^{10} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{10}}{\left(a^{3}\right)^{4}})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 2 kia riro ai te 10.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{10}}{a^{12}})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 4 kia riro ai te 12.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{2}})
Tuhia anō te a^{12} hei a^{10}a^{2}. Me whakakore tahi te a^{10} i te taurunga me te tauraro.
-\left(a^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{2}\right)^{-2}\times 2a^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-2a^{1}\left(a^{2}\right)^{-2}
Whakarūnātia.
-2a\left(a^{2}\right)^{-2}
Mō tētahi kupu t, t^{1}=t.