Aromātai
\frac{1}{ab^{9}}
Whakaroha
\frac{1}{ab^{9}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(a^{3}\right)^{-1}b^{-1}}{\left(\left(-a\right)b^{-4}\right)^{-2}}
Whakarohaina te \left(a^{3}b\right)^{-1}.
\frac{a^{-3}b^{-1}}{\left(\left(-a\right)b^{-4}\right)^{-2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te -1 kia riro ai te -3.
\frac{a^{-3}b^{-1}}{\left(-a\right)^{-2}\left(b^{-4}\right)^{-2}}
Whakarohaina te \left(\left(-a\right)b^{-4}\right)^{-2}.
\frac{a^{-3}b^{-1}}{\left(-a\right)^{-2}b^{8}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -4 me te -2 kia riro ai te 8.
\frac{a^{-3}}{\left(-a\right)^{-2}b^{9}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{a^{-3}}{\left(-1\right)^{-2}a^{-2}b^{9}}
Whakarohaina te \left(-a\right)^{-2}.
\frac{a^{-3}}{1a^{-2}b^{9}}
Tātaihia te -1 mā te pū o -2, kia riro ko 1.
\frac{1}{a^{1}b^{9}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1}{ab^{9}}
Tātaihia te a mā te pū o 1, kia riro ko a.
\frac{\left(a^{3}\right)^{-1}b^{-1}}{\left(\left(-a\right)b^{-4}\right)^{-2}}
Whakarohaina te \left(a^{3}b\right)^{-1}.
\frac{a^{-3}b^{-1}}{\left(\left(-a\right)b^{-4}\right)^{-2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te -1 kia riro ai te -3.
\frac{a^{-3}b^{-1}}{\left(-a\right)^{-2}\left(b^{-4}\right)^{-2}}
Whakarohaina te \left(\left(-a\right)b^{-4}\right)^{-2}.
\frac{a^{-3}b^{-1}}{\left(-a\right)^{-2}b^{8}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -4 me te -2 kia riro ai te 8.
\frac{a^{-3}}{\left(-a\right)^{-2}b^{9}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{a^{-3}}{\left(-1\right)^{-2}a^{-2}b^{9}}
Whakarohaina te \left(-a\right)^{-2}.
\frac{a^{-3}}{1a^{-2}b^{9}}
Tātaihia te -1 mā te pū o -2, kia riro ko 1.
\frac{1}{a^{1}b^{9}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1}{ab^{9}}
Tātaihia te a mā te pū o 1, kia riro ko a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}