\frac { ( E B I T - 40 ) \times ( 1 - 20 \% ) } { 600 + 100 } = \frac { ( E B I T - 40 - 48 ) \times ( 1 - 20 \% ) } { 600 }
Whakaoti mō B
B=\frac{376}{EIT}
T\neq 0\text{ and }I\neq 0\text{ and }E\neq 0
Whakaoti mō E
E=\frac{376}{BIT}
T\neq 0\text{ and }I\neq 0\text{ and }B\neq 0
Tohaina
Kua tāruatia ki te papatopenga
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{20}{100}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Whakareatia ngā taha e rua o te whārite ki te 600.
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{1}{5}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{6}{7}\left(EBIT-40\right)\times \frac{4}{5}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Tangohia te \frac{1}{5} i te 1, ka \frac{4}{5}.
\frac{24}{35}\left(EBIT-40\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Whakareatia te \frac{6}{7} ki te \frac{4}{5}, ka \frac{24}{35}.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{24}{35} ki te EBIT-40.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{20}{100}\right)
Tangohia te 48 i te -40, ka -88.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{1}{5}\right)
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\times \frac{4}{5}
Tangohia te \frac{1}{5} i te 1, ka \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}=\frac{4}{5}EBIT-\frac{352}{5}
Whakamahia te āhuatanga tohatoha hei whakarea te EBIT-88 ki te \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}-\frac{4}{5}EBIT=-\frac{352}{5}
Tangohia te \frac{4}{5}EBIT mai i ngā taha e rua.
-\frac{4}{35}EBIT-\frac{192}{7}=-\frac{352}{5}
Pahekotia te \frac{24}{35}EBIT me -\frac{4}{5}EBIT, ka -\frac{4}{35}EBIT.
-\frac{4}{35}EBIT=-\frac{352}{5}+\frac{192}{7}
Me tāpiri te \frac{192}{7} ki ngā taha e rua.
-\frac{4}{35}EBIT=-\frac{1504}{35}
Tāpirihia te -\frac{352}{5} ki te \frac{192}{7}, ka -\frac{1504}{35}.
\left(-\frac{4EIT}{35}\right)B=-\frac{1504}{35}
He hanga arowhānui tō te whārite.
\frac{\left(-\frac{4EIT}{35}\right)B}{-\frac{4EIT}{35}}=-\frac{\frac{1504}{35}}{-\frac{4EIT}{35}}
Whakawehea ngā taha e rua ki te -\frac{4}{35}EIT.
B=-\frac{\frac{1504}{35}}{-\frac{4EIT}{35}}
Mā te whakawehe ki te -\frac{4}{35}EIT ka wetekia te whakareanga ki te -\frac{4}{35}EIT.
B=\frac{376}{EIT}
Whakawehe -\frac{1504}{35} ki te -\frac{4}{35}EIT.
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{20}{100}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Whakareatia ngā taha e rua o te whārite ki te 600.
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{1}{5}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{6}{7}\left(EBIT-40\right)\times \frac{4}{5}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Tangohia te \frac{1}{5} i te 1, ka \frac{4}{5}.
\frac{24}{35}\left(EBIT-40\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Whakareatia te \frac{6}{7} ki te \frac{4}{5}, ka \frac{24}{35}.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{24}{35} ki te EBIT-40.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{20}{100}\right)
Tangohia te 48 i te -40, ka -88.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{1}{5}\right)
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\times \frac{4}{5}
Tangohia te \frac{1}{5} i te 1, ka \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}=\frac{4}{5}EBIT-\frac{352}{5}
Whakamahia te āhuatanga tohatoha hei whakarea te EBIT-88 ki te \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}-\frac{4}{5}EBIT=-\frac{352}{5}
Tangohia te \frac{4}{5}EBIT mai i ngā taha e rua.
-\frac{4}{35}EBIT-\frac{192}{7}=-\frac{352}{5}
Pahekotia te \frac{24}{35}EBIT me -\frac{4}{5}EBIT, ka -\frac{4}{35}EBIT.
-\frac{4}{35}EBIT=-\frac{352}{5}+\frac{192}{7}
Me tāpiri te \frac{192}{7} ki ngā taha e rua.
-\frac{4}{35}EBIT=-\frac{1504}{35}
Tāpirihia te -\frac{352}{5} ki te \frac{192}{7}, ka -\frac{1504}{35}.
\left(-\frac{4BIT}{35}\right)E=-\frac{1504}{35}
He hanga arowhānui tō te whārite.
\frac{\left(-\frac{4BIT}{35}\right)E}{-\frac{4BIT}{35}}=-\frac{\frac{1504}{35}}{-\frac{4BIT}{35}}
Whakawehea ngā taha e rua ki te -\frac{4}{35}BIT.
E=-\frac{\frac{1504}{35}}{-\frac{4BIT}{35}}
Mā te whakawehe ki te -\frac{4}{35}BIT ka wetekia te whakareanga ki te -\frac{4}{35}BIT.
E=\frac{376}{BIT}
Whakawehe -\frac{1504}{35} ki te -\frac{4}{35}BIT.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}