Aromātai
27t^{2}
Kimi Pārōnaki e ai ki t
54t
Tohaina
Kua tāruatia ki te papatopenga
\frac{9^{3}\times 27t^{4}}{3^{6}t^{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 4 kia riro ai te 6.
\frac{27\times 9^{3}t^{2}}{3^{6}}
Me whakakore tahi te t^{2} i te taurunga me te tauraro.
\frac{27\times 729t^{2}}{3^{6}}
Tātaihia te 9 mā te pū o 3, kia riro ko 729.
\frac{19683t^{2}}{3^{6}}
Whakareatia te 27 ki te 729, ka 19683.
\frac{19683t^{2}}{729}
Tātaihia te 3 mā te pū o 6, kia riro ko 729.
27t^{2}
Whakawehea te 19683t^{2} ki te 729, kia riro ko 27t^{2}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{19683}{729}t^{4-2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}t}(27t^{2})
Mahia ngā tātaitanga.
2\times 27t^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
54t^{1}
Mahia ngā tātaitanga.
54t
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}