Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{9^{3}\times 27t^{4}}{3^{6}t^{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 4 kia riro ai te 6.
\frac{27\times 9^{3}t^{2}}{3^{6}}
Me whakakore tahi te t^{2} i te taurunga me te tauraro.
\frac{27\times 729t^{2}}{3^{6}}
Tātaihia te 9 mā te pū o 3, kia riro ko 729.
\frac{19683t^{2}}{3^{6}}
Whakareatia te 27 ki te 729, ka 19683.
\frac{19683t^{2}}{729}
Tātaihia te 3 mā te pū o 6, kia riro ko 729.
27t^{2}
Whakawehea te 19683t^{2} ki te 729, kia riro ko 27t^{2}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{19683}{729}t^{4-2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}t}(27t^{2})
Mahia ngā tātaitanga.
2\times 27t^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
54t^{1}
Mahia ngā tātaitanga.
54t
Mō tētahi kupu t, t^{1}=t.