Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-20\left(85-30\right)\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Tē taea kia ōrite te tāupe b ki tētahi o ngā uara -85,85 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 20\left(b-85\right)\left(b+85\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(85-b\right)\left(85+b\right),20.
-20\times 55\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Tangohia te 30 i te 85, ka 55.
-1100\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Whakareatia te -20 ki te 55, ka -1100.
-1100\times 121=11\left(b-85\right)\left(b+85\right)
Tāpirihia te 85 ki te 36, ka 121.
-133100=11\left(b-85\right)\left(b+85\right)
Whakareatia te -1100 ki te 121, ka -133100.
-133100=\left(11b-935\right)\left(b+85\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 11 ki te b-85.
-133100=11b^{2}-79475
Whakamahia te āhuatanga tuaritanga hei whakarea te 11b-935 ki te b+85 ka whakakotahi i ngā kupu rite.
11b^{2}-79475=-133100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
11b^{2}=-133100+79475
Me tāpiri te 79475 ki ngā taha e rua.
11b^{2}=-53625
Tāpirihia te -133100 ki te 79475, ka -53625.
b^{2}=\frac{-53625}{11}
Whakawehea ngā taha e rua ki te 11.
b^{2}=-4875
Whakawehea te -53625 ki te 11, kia riro ko -4875.
b=5\sqrt{195}i b=-5\sqrt{195}i
Kua oti te whārite te whakatau.
-20\left(85-30\right)\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Tē taea kia ōrite te tāupe b ki tētahi o ngā uara -85,85 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 20\left(b-85\right)\left(b+85\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(85-b\right)\left(85+b\right),20.
-20\times 55\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Tangohia te 30 i te 85, ka 55.
-1100\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Whakareatia te -20 ki te 55, ka -1100.
-1100\times 121=11\left(b-85\right)\left(b+85\right)
Tāpirihia te 85 ki te 36, ka 121.
-133100=11\left(b-85\right)\left(b+85\right)
Whakareatia te -1100 ki te 121, ka -133100.
-133100=\left(11b-935\right)\left(b+85\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 11 ki te b-85.
-133100=11b^{2}-79475
Whakamahia te āhuatanga tuaritanga hei whakarea te 11b-935 ki te b+85 ka whakakotahi i ngā kupu rite.
11b^{2}-79475=-133100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
11b^{2}-79475+133100=0
Me tāpiri te 133100 ki ngā taha e rua.
11b^{2}+53625=0
Tāpirihia te -79475 ki te 133100, ka 53625.
b=\frac{0±\sqrt{0^{2}-4\times 11\times 53625}}{2\times 11}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 11 mō a, 0 mō b, me 53625 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 11\times 53625}}{2\times 11}
Pūrua 0.
b=\frac{0±\sqrt{-44\times 53625}}{2\times 11}
Whakareatia -4 ki te 11.
b=\frac{0±\sqrt{-2359500}}{2\times 11}
Whakareatia -44 ki te 53625.
b=\frac{0±110\sqrt{195}i}{2\times 11}
Tuhia te pūtakerua o te -2359500.
b=\frac{0±110\sqrt{195}i}{22}
Whakareatia 2 ki te 11.
b=5\sqrt{195}i
Nā, me whakaoti te whārite b=\frac{0±110\sqrt{195}i}{22} ina he tāpiri te ±.
b=-5\sqrt{195}i
Nā, me whakaoti te whārite b=\frac{0±110\sqrt{195}i}{22} ina he tango te ±.
b=5\sqrt{195}i b=-5\sqrt{195}i
Kua oti te whārite te whakatau.