Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{8.25-\left(4.25-3.15\right)}{\frac{0.04}{0.4}+\frac{0.006}{0.6}+7.04}
Tangohia te 0.05 i te 8.3, ka 8.25.
\frac{8.25-1.1}{\frac{0.04}{0.4}+\frac{0.006}{0.6}+7.04}
Tangohia te 3.15 i te 4.25, ka 1.1.
\frac{7.15}{\frac{0.04}{0.4}+\frac{0.006}{0.6}+7.04}
Tangohia te 1.1 i te 8.25, ka 7.15.
\frac{7.15}{\frac{4}{40}+\frac{0.006}{0.6}+7.04}
Whakarohaina te \frac{0.04}{0.4} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{7.15}{\frac{1}{10}+\frac{0.006}{0.6}+7.04}
Whakahekea te hautanga \frac{4}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{7.15}{\frac{1}{10}+\frac{6}{600}+7.04}
Whakarohaina te \frac{0.006}{0.6} mā te whakarea i te taurunga me te tauraro ki te 1000.
\frac{7.15}{\frac{1}{10}+\frac{1}{100}+7.04}
Whakahekea te hautanga \frac{6}{600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{7.15}{\frac{10}{100}+\frac{1}{100}+7.04}
Ko te maha noa iti rawa atu o 10 me 100 ko 100. Me tahuri \frac{1}{10} me \frac{1}{100} ki te hautau me te tautūnga 100.
\frac{7.15}{\frac{10+1}{100}+7.04}
Tā te mea he rite te tauraro o \frac{10}{100} me \frac{1}{100}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7.15}{\frac{11}{100}+7.04}
Tāpirihia te 10 ki te 1, ka 11.
\frac{7.15}{\frac{11}{100}+\frac{176}{25}}
Me tahuri ki tau ā-ira 7.04 ki te hautau \frac{704}{100}. Whakahekea te hautanga \frac{704}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{7.15}{\frac{11}{100}+\frac{704}{100}}
Ko te maha noa iti rawa atu o 100 me 25 ko 100. Me tahuri \frac{11}{100} me \frac{176}{25} ki te hautau me te tautūnga 100.
\frac{7.15}{\frac{11+704}{100}}
Tā te mea he rite te tauraro o \frac{11}{100} me \frac{704}{100}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7.15}{\frac{715}{100}}
Tāpirihia te 11 ki te 704, ka 715.
\frac{7.15}{\frac{143}{20}}
Whakahekea te hautanga \frac{715}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
1
Whakawehea te 7.15 ki te \frac{143}{20}, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}