Aromātai
\frac{61}{6}\approx 10.166666667
Tauwehe
\frac{61}{2 \cdot 3} = 10\frac{1}{6} = 10.166666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{2.5\times 0.8}{\frac{4-2.75}{6.25}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Tangohia te 3.75 i te 6.25, ka 2.5.
\frac{2}{\frac{4-2.75}{6.25}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Whakareatia te 2.5 ki te 0.8, ka 2.
\frac{2}{\frac{1.25}{6.25}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Tangohia te 2.75 i te 4, ka 1.25.
\frac{2}{\frac{125}{625}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Whakarohaina te \frac{1.25}{6.25} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{2}{\frac{1}{5}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Whakahekea te hautanga \frac{125}{625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 125.
2\times 5+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Whakawehe 2 ki te \frac{1}{5} mā te whakarea 2 ki te tau huripoki o \frac{1}{5}.
10+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Whakareatia te 2 ki te 5, ka 10.
10+\frac{\frac{3.25}{3.25}}{\left(40-38.8\right)\times 5}
Tāpirihia te 2.5 ki te 0.75, ka 3.25.
10+\frac{1}{\left(40-38.8\right)\times 5}
Whakawehea te 3.25 ki te 3.25, kia riro ko 1.
10+\frac{1}{1.2\times 5}
Tangohia te 38.8 i te 40, ka 1.2.
10+\frac{1}{6}
Whakareatia te 1.2 ki te 5, ka 6.
\frac{60}{6}+\frac{1}{6}
Me tahuri te 10 ki te hautau \frac{60}{6}.
\frac{60+1}{6}
Tā te mea he rite te tauraro o \frac{60}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{61}{6}
Tāpirihia te 60 ki te 1, ka 61.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}