Aromātai
29
Tauwehe
29
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{5^{3}\times 2-2\times 10^{2}}{5}}{\frac{10^{6}}{10^{5}}}+\frac{7^{3}}{7^{2}}\times 2^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\frac{\frac{5^{3}\times 2-2\times 10^{2}}{5}}{10^{1}}+\frac{7^{3}}{7^{2}}\times 2^{2}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 5 i te 6 kia riro ai te 1.
\frac{\frac{5^{3}\times 2-2\times 10^{2}}{5}}{10^{1}}+7^{1}\times 2^{2}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 2 i te 3 kia riro ai te 1.
\frac{\frac{125\times 2-2\times 10^{2}}{5}}{10^{1}}+7^{1}\times 2^{2}
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
\frac{\frac{250-2\times 10^{2}}{5}}{10^{1}}+7^{1}\times 2^{2}
Whakareatia te 125 ki te 2, ka 250.
\frac{\frac{250-2\times 100}{5}}{10^{1}}+7^{1}\times 2^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
\frac{\frac{250-200}{5}}{10^{1}}+7^{1}\times 2^{2}
Whakareatia te 2 ki te 100, ka 200.
\frac{\frac{50}{5}}{10^{1}}+7^{1}\times 2^{2}
Tangohia te 200 i te 250, ka 50.
\frac{10}{10^{1}}+7^{1}\times 2^{2}
Whakawehea te 50 ki te 5, kia riro ko 10.
\frac{10}{10}+7^{1}\times 2^{2}
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
1+7^{1}\times 2^{2}
Whakawehea te 10 ki te 10, kia riro ko 1.
1+7\times 2^{2}
Tātaihia te 7 mā te pū o 1, kia riro ko 7.
1+7\times 4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
1+28
Whakareatia te 7 ki te 4, ka 28.
29
Tāpirihia te 1 ki te 28, ka 29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}