Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{11^{0\times 5}}{x^{24}}
Tāpirihia te 5 ki te 6, ka 11.
\frac{11^{0}}{x^{24}}
Whakareatia te 0 ki te 5, ka 0.
\frac{1}{x^{24}}
Tātaihia te 11 mā te pū o 0, kia riro ko 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11^{0\times 5}}{x^{24}})
Tāpirihia te 5 ki te 6, ka 11.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11^{0}}{x^{24}})
Whakareatia te 0 ki te 5, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{24}})
Tātaihia te 11 mā te pū o 0, kia riro ko 1.
-\left(x^{24}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{24})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{24}\right)^{-2}\times 24x^{24-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-24x^{23}\left(x^{24}\right)^{-2}
Whakarūnātia.