Whakaoti mō x
x=-\frac{530}{3y+1}
y\neq -\frac{1}{3}
Whakaoti mō y
y=-\frac{1}{3}-\frac{530}{3x}
x\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
45-x-23\times 25=y\times 3x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x.
45-x-575=y\times 3x
Whakareatia te 23 ki te 25, ka 575.
-530-x=y\times 3x
Tangohia te 575 i te 45, ka -530.
-530-x-y\times 3x=0
Tangohia te y\times 3x mai i ngā taha e rua.
-530-x-3yx=0
Whakareatia te -1 ki te 3, ka -3.
-x-3yx=530
Me tāpiri te 530 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\left(-1-3y\right)x=530
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-3y-1\right)x=530
He hanga arowhānui tō te whārite.
\frac{\left(-3y-1\right)x}{-3y-1}=\frac{530}{-3y-1}
Whakawehea ngā taha e rua ki te -1-3y.
x=\frac{530}{-3y-1}
Mā te whakawehe ki te -1-3y ka wetekia te whakareanga ki te -1-3y.
x=-\frac{530}{3y+1}
Whakawehe 530 ki te -1-3y.
x=-\frac{530}{3y+1}\text{, }x\neq 0
Tē taea kia ōrite te tāupe x ki 0.
45-x-23\times 25=y\times 3x
Whakareatia ngā taha e rua o te whārite ki te 3x.
45-x-575=y\times 3x
Whakareatia te 23 ki te 25, ka 575.
-530-x=y\times 3x
Tangohia te 575 i te 45, ka -530.
y\times 3x=-530-x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3xy=-x-530
He hanga arowhānui tō te whārite.
\frac{3xy}{3x}=\frac{-x-530}{3x}
Whakawehea ngā taha e rua ki te 3x.
y=\frac{-x-530}{3x}
Mā te whakawehe ki te 3x ka wetekia te whakareanga ki te 3x.
y=-\frac{1}{3}-\frac{530}{3x}
Whakawehe -530-x ki te 3x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}