Aromātai
2xy^{3}
Whakaroha
2xy^{3}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { ( 4 x ^ { 2 } y ^ { 3 } ) ^ { 2 } } { ( 2 x y ) ^ { 3 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{4^{2}\left(x^{2}\right)^{2}\left(y^{3}\right)^{2}}{\left(2xy\right)^{3}}
Whakarohaina te \left(4x^{2}y^{3}\right)^{2}.
\frac{4^{2}x^{4}\left(y^{3}\right)^{2}}{\left(2xy\right)^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{4^{2}x^{4}y^{6}}{\left(2xy\right)^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\frac{16x^{4}y^{6}}{\left(2xy\right)^{3}}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{16x^{4}y^{6}}{2^{3}x^{3}y^{3}}
Whakarohaina te \left(2xy\right)^{3}.
\frac{16x^{4}y^{6}}{8x^{3}y^{3}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
2xy^{3}
Me whakakore tahi te 8x^{3}y^{3} i te taurunga me te tauraro.
\frac{4^{2}\left(x^{2}\right)^{2}\left(y^{3}\right)^{2}}{\left(2xy\right)^{3}}
Whakarohaina te \left(4x^{2}y^{3}\right)^{2}.
\frac{4^{2}x^{4}\left(y^{3}\right)^{2}}{\left(2xy\right)^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{4^{2}x^{4}y^{6}}{\left(2xy\right)^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\frac{16x^{4}y^{6}}{\left(2xy\right)^{3}}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{16x^{4}y^{6}}{2^{3}x^{3}y^{3}}
Whakarohaina te \left(2xy\right)^{3}.
\frac{16x^{4}y^{6}}{8x^{3}y^{3}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
2xy^{3}
Me whakakore tahi te 8x^{3}y^{3} i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}