Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4^{2}-\left(\sqrt{5}\right)^{2}}{2\sqrt{11}}
Whakaarohia te \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16-\left(\sqrt{5}\right)^{2}}{2\sqrt{11}}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{16-5}{2\sqrt{11}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{11}{2\sqrt{11}}
Tangohia te 5 i te 16, ka 11.
\frac{11\sqrt{11}}{2\left(\sqrt{11}\right)^{2}}
Whakangāwaritia te tauraro o \frac{11}{2\sqrt{11}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{11}.
\frac{11\sqrt{11}}{2\times 11}
Ko te pūrua o \sqrt{11} ko 11.
\frac{\sqrt{11}}{2}
Me whakakore tahi te 11 i te taurunga me te tauraro.