Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\times 1+4\times \left(-2i\right)+3i\times 1+3\left(-2\right)i^{2}}{\left(4-3i\right)\left(1+2i\right)}
Me whakarea ngā tau matatini 4+3i me 1-2i pēnā i te whakarea huarua.
\frac{4\times 1+4\times \left(-2i\right)+3i\times 1+3\left(-2\right)\left(-1\right)}{\left(4-3i\right)\left(1+2i\right)}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{4-8i+3i+6}{\left(4-3i\right)\left(1+2i\right)}
Mahia ngā whakarea i roto o 4\times 1+4\times \left(-2i\right)+3i\times 1+3\left(-2\right)\left(-1\right).
\frac{4+6+\left(-8+3\right)i}{\left(4-3i\right)\left(1+2i\right)}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 4-8i+3i+6.
\frac{10-5i}{\left(4-3i\right)\left(1+2i\right)}
Mahia ngā tāpiri i roto o 4+6+\left(-8+3\right)i.
\frac{10-5i}{4\times 1+4\times \left(2i\right)-3i-3\times 2i^{2}}
Me whakarea ngā tau matatini 4-3i me 1+2i pēnā i te whakarea huarua.
\frac{10-5i}{4\times 1+4\times \left(2i\right)-3i-3\times 2\left(-1\right)}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{10-5i}{4+8i-3i+6}
Mahia ngā whakarea i roto o 4\times 1+4\times \left(2i\right)-3i-3\times 2\left(-1\right).
\frac{10-5i}{4+6+\left(8-3\right)i}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 4+8i-3i+6.
\frac{10-5i}{10+5i}
Mahia ngā tāpiri i roto o 4+6+\left(8-3\right)i.
\frac{\left(10-5i\right)\left(10-5i\right)}{\left(10+5i\right)\left(10-5i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 10-5i.
\frac{\left(10-5i\right)\left(10-5i\right)}{10^{2}-5^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(10-5i\right)\left(10-5i\right)}{125}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{10\times 10+10\times \left(-5i\right)-5i\times 10-5\left(-5\right)i^{2}}{125}
Me whakarea ngā tau matatini 10-5i me 10-5i pēnā i te whakarea huarua.
\frac{10\times 10+10\times \left(-5i\right)-5i\times 10-5\left(-5\right)\left(-1\right)}{125}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{100-50i-50i-25}{125}
Mahia ngā whakarea i roto o 10\times 10+10\times \left(-5i\right)-5i\times 10-5\left(-5\right)\left(-1\right).
\frac{100-25+\left(-50-50\right)i}{125}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 100-50i-50i-25.
\frac{75-100i}{125}
Mahia ngā tāpiri i roto o 100-25+\left(-50-50\right)i.
\frac{3}{5}-\frac{4}{5}i
Whakawehea te 75-100i ki te 125, kia riro ko \frac{3}{5}-\frac{4}{5}i.
Re(\frac{4\times 1+4\times \left(-2i\right)+3i\times 1+3\left(-2\right)i^{2}}{\left(4-3i\right)\left(1+2i\right)})
Me whakarea ngā tau matatini 4+3i me 1-2i pēnā i te whakarea huarua.
Re(\frac{4\times 1+4\times \left(-2i\right)+3i\times 1+3\left(-2\right)\left(-1\right)}{\left(4-3i\right)\left(1+2i\right)})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{4-8i+3i+6}{\left(4-3i\right)\left(1+2i\right)})
Mahia ngā whakarea i roto o 4\times 1+4\times \left(-2i\right)+3i\times 1+3\left(-2\right)\left(-1\right).
Re(\frac{4+6+\left(-8+3\right)i}{\left(4-3i\right)\left(1+2i\right)})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 4-8i+3i+6.
Re(\frac{10-5i}{\left(4-3i\right)\left(1+2i\right)})
Mahia ngā tāpiri i roto o 4+6+\left(-8+3\right)i.
Re(\frac{10-5i}{4\times 1+4\times \left(2i\right)-3i-3\times 2i^{2}})
Me whakarea ngā tau matatini 4-3i me 1+2i pēnā i te whakarea huarua.
Re(\frac{10-5i}{4\times 1+4\times \left(2i\right)-3i-3\times 2\left(-1\right)})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{10-5i}{4+8i-3i+6})
Mahia ngā whakarea i roto o 4\times 1+4\times \left(2i\right)-3i-3\times 2\left(-1\right).
Re(\frac{10-5i}{4+6+\left(8-3\right)i})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 4+8i-3i+6.
Re(\frac{10-5i}{10+5i})
Mahia ngā tāpiri i roto o 4+6+\left(8-3\right)i.
Re(\frac{\left(10-5i\right)\left(10-5i\right)}{\left(10+5i\right)\left(10-5i\right)})
Me whakarea te taurunga me te tauraro o \frac{10-5i}{10+5i} ki te haumi hiato o te tauraro, 10-5i.
Re(\frac{\left(10-5i\right)\left(10-5i\right)}{10^{2}-5^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(10-5i\right)\left(10-5i\right)}{125})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{10\times 10+10\times \left(-5i\right)-5i\times 10-5\left(-5\right)i^{2}}{125})
Me whakarea ngā tau matatini 10-5i me 10-5i pēnā i te whakarea huarua.
Re(\frac{10\times 10+10\times \left(-5i\right)-5i\times 10-5\left(-5\right)\left(-1\right)}{125})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{100-50i-50i-25}{125})
Mahia ngā whakarea i roto o 10\times 10+10\times \left(-5i\right)-5i\times 10-5\left(-5\right)\left(-1\right).
Re(\frac{100-25+\left(-50-50\right)i}{125})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 100-50i-50i-25.
Re(\frac{75-100i}{125})
Mahia ngā tāpiri i roto o 100-25+\left(-50-50\right)i.
Re(\frac{3}{5}-\frac{4}{5}i)
Whakawehea te 75-100i ki te 125, kia riro ko \frac{3}{5}-\frac{4}{5}i.
\frac{3}{5}
Ko te wāhi tūturu o \frac{3}{5}-\frac{4}{5}i ko \frac{3}{5}.