Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{33^{28}}{3^{3}}=3^{5x}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 7 me te 4 kia riro ai te 28.
\frac{3299060778251569566188233498374847942355841}{3^{3}}=3^{5x}
Tātaihia te 33 mā te pū o 28, kia riro ko 3299060778251569566188233498374847942355841.
\frac{3299060778251569566188233498374847942355841}{27}=3^{5x}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
122187436231539613562527166606475849716883=3^{5x}
Whakawehea te 3299060778251569566188233498374847942355841 ki te 27, kia riro ko 122187436231539613562527166606475849716883.
3^{5x}=122187436231539613562527166606475849716883
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(3^{5x})=\log(122187436231539613562527166606475849716883)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
5x\log(3)=\log(122187436231539613562527166606475849716883)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
5x=\frac{\log(122187436231539613562527166606475849716883)}{\log(3)}
Whakawehea ngā taha e rua ki te \log(3).
5x=\log_{3}\left(122187436231539613562527166606475849716883\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\log_{3}\left(122187436231539613562527166606475849716883\right)}{5}
Whakawehea ngā taha e rua ki te 5.