Whakaoti mō x
x=\frac{28\log_{3}\left(11\right)}{5}+5\approx 17.222886696
Whakaoti mō x (complex solution)
x=\frac{2\pi n_{1}i}{5\ln(3)}+\frac{28\log_{3}\left(11\right)}{5}+5
n_{1}\in \mathrm{Z}
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { ( 33 ^ { 7 } ) ^ { 4 } } { 3 ^ { 3 } } = 3 ^ { 5 \cdot x }
Tohaina
Kua tāruatia ki te papatopenga
\frac{33^{28}}{3^{3}}=3^{5x}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 7 me te 4 kia riro ai te 28.
\frac{3299060778251569566188233498374847942355841}{3^{3}}=3^{5x}
Tātaihia te 33 mā te pū o 28, kia riro ko 3299060778251569566188233498374847942355841.
\frac{3299060778251569566188233498374847942355841}{27}=3^{5x}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
122187436231539613562527166606475849716883=3^{5x}
Whakawehea te 3299060778251569566188233498374847942355841 ki te 27, kia riro ko 122187436231539613562527166606475849716883.
3^{5x}=122187436231539613562527166606475849716883
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(3^{5x})=\log(122187436231539613562527166606475849716883)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
5x\log(3)=\log(122187436231539613562527166606475849716883)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
5x=\frac{\log(122187436231539613562527166606475849716883)}{\log(3)}
Whakawehea ngā taha e rua ki te \log(3).
5x=\log_{3}\left(122187436231539613562527166606475849716883\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\log_{3}\left(122187436231539613562527166606475849716883\right)}{5}
Whakawehea ngā taha e rua ki te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}