Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3^{-1}\left(x^{2}\right)^{-1}y^{-1}x^{2}z}{3y^{-1}}
Whakarohaina te \left(3x^{2}y\right)^{-1}.
\frac{3^{-1}x^{-2}y^{-1}x^{2}z}{3y^{-1}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -1 kia riro ai te -2.
\frac{\frac{1}{3}x^{-2}y^{-1}x^{2}z}{3y^{-1}}
Tātaihia te 3 mā te pū o -1, kia riro ko \frac{1}{3}.
\frac{\frac{1}{3}y^{-1}z}{3y^{-1}}
Whakareatia te x^{-2} ki te x^{2}, ka 1.
\frac{\frac{1}{3}z}{3}
Me whakakore tahi te \frac{1}{y} i te taurunga me te tauraro.
\frac{1}{9}z
Whakawehea te \frac{1}{3}z ki te 3, kia riro ko \frac{1}{9}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{3^{-1}\left(x^{2}\right)^{-1}y^{-1}x^{2}z}{3y^{-1}})
Whakarohaina te \left(3x^{2}y\right)^{-1}.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{3^{-1}x^{-2}y^{-1}x^{2}z}{3y^{-1}})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -1 kia riro ai te -2.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{\frac{1}{3}x^{-2}y^{-1}x^{2}z}{3y^{-1}})
Tātaihia te 3 mā te pū o -1, kia riro ko \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{\frac{1}{3}y^{-1}z}{3y^{-1}})
Whakareatia te x^{-2} ki te x^{2}, ka 1.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{\frac{1}{3}z}{3})
Me whakakore tahi te \frac{1}{y} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{1}{9}z)
Whakawehea te \frac{1}{3}z ki te 3, kia riro ko \frac{1}{9}z.
\frac{1}{9}z^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{9}z^{0}
Tango 1 mai i 1.
\frac{1}{9}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{9}
Mō tētahi kupu t, t\times 1=t me 1t=t.