Aromātai
\frac{z}{9}
Kimi Pārōnaki e ai ki z
\frac{1}{9} = 0.1111111111111111
Tohaina
Kua tāruatia ki te papatopenga
\frac{3^{-1}\left(x^{2}\right)^{-1}y^{-1}x^{2}z}{3y^{-1}}
Whakarohaina te \left(3x^{2}y\right)^{-1}.
\frac{3^{-1}x^{-2}y^{-1}x^{2}z}{3y^{-1}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -1 kia riro ai te -2.
\frac{\frac{1}{3}x^{-2}y^{-1}x^{2}z}{3y^{-1}}
Tātaihia te 3 mā te pū o -1, kia riro ko \frac{1}{3}.
\frac{\frac{1}{3}y^{-1}z}{3y^{-1}}
Whakareatia te x^{-2} ki te x^{2}, ka 1.
\frac{\frac{1}{3}z}{3}
Me whakakore tahi te \frac{1}{y} i te taurunga me te tauraro.
\frac{1}{9}z
Whakawehea te \frac{1}{3}z ki te 3, kia riro ko \frac{1}{9}z.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{3^{-1}\left(x^{2}\right)^{-1}y^{-1}x^{2}z}{3y^{-1}})
Whakarohaina te \left(3x^{2}y\right)^{-1}.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{3^{-1}x^{-2}y^{-1}x^{2}z}{3y^{-1}})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -1 kia riro ai te -2.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{\frac{1}{3}x^{-2}y^{-1}x^{2}z}{3y^{-1}})
Tātaihia te 3 mā te pū o -1, kia riro ko \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{\frac{1}{3}y^{-1}z}{3y^{-1}})
Whakareatia te x^{-2} ki te x^{2}, ka 1.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{\frac{1}{3}z}{3})
Me whakakore tahi te \frac{1}{y} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{1}{9}z)
Whakawehea te \frac{1}{3}z ki te 3, kia riro ko \frac{1}{9}z.
\frac{1}{9}z^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{9}z^{0}
Tango 1 mai i 1.
\frac{1}{9}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{9}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}