Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3^{-2}\left(x^{-1}\right)^{-2}\left(y^{-2}\right)^{-2}}{\left(3xy^{2}\right)^{2}}
Whakarohaina te \left(3x^{-1}y^{-2}\right)^{-2}.
\frac{3^{-2}x^{2}\left(y^{-2}\right)^{-2}}{\left(3xy^{2}\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -1 me te -2 kia riro ai te 2.
\frac{3^{-2}x^{2}y^{4}}{\left(3xy^{2}\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -2 me te -2 kia riro ai te 4.
\frac{\frac{1}{9}x^{2}y^{4}}{\left(3xy^{2}\right)^{2}}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
\frac{\frac{1}{9}x^{2}y^{4}}{3^{2}x^{2}\left(y^{2}\right)^{2}}
Whakarohaina te \left(3xy^{2}\right)^{2}.
\frac{\frac{1}{9}x^{2}y^{4}}{3^{2}x^{2}y^{4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{\frac{1}{9}x^{2}y^{4}}{9x^{2}y^{4}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{\frac{1}{9}}{9}
Me whakakore tahi te x^{2}y^{4} i te taurunga me te tauraro.
\frac{1}{9\times 9}
Tuhia te \frac{\frac{1}{9}}{9} hei hautanga kotahi.
\frac{1}{81}
Whakareatia te 9 ki te 9, ka 81.