Whakaoti mō k (complex solution)
\left\{\begin{matrix}k=-\frac{x+3}{3x+1}\text{, }&x\neq -\frac{1}{3}\text{ and }x\neq 0\text{ and }x\neq -\frac{5}{3}\\k\in \mathrm{C}\setminus -\frac{1}{3},-3,\frac{1}{3}\text{, }&x=0\end{matrix}\right.
Whakaoti mō k
\left\{\begin{matrix}k=-\frac{x+3}{3x+1}\text{, }&x\neq -\frac{1}{3}\text{ and }x\neq -\frac{5}{3}\text{ and }x\neq 0\\k\in \mathrm{R}\setminus -\frac{1}{3},\frac{1}{3},-3\text{, }&x=0\end{matrix}\right.
Whakaoti mō x (complex solution)
x=-\frac{k+3}{3k+1}
x=0\text{, }k\neq -\frac{1}{3}\text{ and }k\neq -3\text{ and }k\neq \frac{1}{3}
Whakaoti mō x
x=-\frac{k+3}{3k+1}
x=0\text{, }k\neq -3\text{ and }|k|\neq \frac{1}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3k+1\right)x^{2}+3k-1+\left(k+3\right)x=3k-1
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -3,-\frac{1}{3},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3k-1\right)\left(k+3\right)\left(3k+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(3k+1\right)\left(3k^{2}+8k-3\right),9k^{2}-1,3k^{2}+10k+3.
3kx^{2}+x^{2}+3k-1+\left(k+3\right)x=3k-1
Whakamahia te āhuatanga tohatoha hei whakarea te 3k+1 ki te x^{2}.
3kx^{2}+x^{2}+3k-1+kx+3x=3k-1
Whakamahia te āhuatanga tohatoha hei whakarea te k+3 ki te x.
3kx^{2}+x^{2}+3k-1+kx+3x-3k=-1
Tangohia te 3k mai i ngā taha e rua.
3kx^{2}+x^{2}-1+kx+3x=-1
Pahekotia te 3k me -3k, ka 0.
3kx^{2}-1+kx+3x=-1-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
3kx^{2}+kx+3x=-1-x^{2}+1
Me tāpiri te 1 ki ngā taha e rua.
3kx^{2}+kx+3x=-x^{2}
Tāpirihia te -1 ki te 1, ka 0.
3kx^{2}+kx=-x^{2}-3x
Tangohia te 3x mai i ngā taha e rua.
\left(3x^{2}+x\right)k=-x^{2}-3x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\frac{\left(3x^{2}+x\right)k}{3x^{2}+x}=-\frac{x\left(x+3\right)}{3x^{2}+x}
Whakawehea ngā taha e rua ki te 3x^{2}+x.
k=-\frac{x\left(x+3\right)}{3x^{2}+x}
Mā te whakawehe ki te 3x^{2}+x ka wetekia te whakareanga ki te 3x^{2}+x.
k=-\frac{x+3}{3x+1}
Whakawehe -x\left(3+x\right) ki te 3x^{2}+x.
k=-\frac{x+3}{3x+1}\text{, }k\neq -\frac{1}{3}\text{ and }k\neq -3\text{ and }k\neq \frac{1}{3}
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -\frac{1}{3},-3,\frac{1}{3}.
\left(3k+1\right)x^{2}+3k-1+\left(k+3\right)x=3k-1
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -3,-\frac{1}{3},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3k-1\right)\left(k+3\right)\left(3k+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(3k+1\right)\left(3k^{2}+8k-3\right),9k^{2}-1,3k^{2}+10k+3.
3kx^{2}+x^{2}+3k-1+\left(k+3\right)x=3k-1
Whakamahia te āhuatanga tohatoha hei whakarea te 3k+1 ki te x^{2}.
3kx^{2}+x^{2}+3k-1+kx+3x=3k-1
Whakamahia te āhuatanga tohatoha hei whakarea te k+3 ki te x.
3kx^{2}+x^{2}+3k-1+kx+3x-3k=-1
Tangohia te 3k mai i ngā taha e rua.
3kx^{2}+x^{2}-1+kx+3x=-1
Pahekotia te 3k me -3k, ka 0.
3kx^{2}-1+kx+3x=-1-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
3kx^{2}+kx+3x=-1-x^{2}+1
Me tāpiri te 1 ki ngā taha e rua.
3kx^{2}+kx+3x=-x^{2}
Tāpirihia te -1 ki te 1, ka 0.
3kx^{2}+kx=-x^{2}-3x
Tangohia te 3x mai i ngā taha e rua.
\left(3x^{2}+x\right)k=-x^{2}-3x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\frac{\left(3x^{2}+x\right)k}{3x^{2}+x}=-\frac{x\left(x+3\right)}{3x^{2}+x}
Whakawehea ngā taha e rua ki te 3x^{2}+x.
k=-\frac{x\left(x+3\right)}{3x^{2}+x}
Mā te whakawehe ki te 3x^{2}+x ka wetekia te whakareanga ki te 3x^{2}+x.
k=-\frac{x+3}{3x+1}
Whakawehe -x\left(3+x\right) ki te 3x^{2}+x.
k=-\frac{x+3}{3x+1}\text{, }k\neq -\frac{1}{3}\text{ and }k\neq -3\text{ and }k\neq \frac{1}{3}
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -\frac{1}{3},-3,\frac{1}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}