Tīpoka ki ngā ihirangi matua
Whakaoti mō k (complex solution)
Tick mark Image
Whakaoti mō k
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3k+1\right)x^{2}+3k-1+\left(k+3\right)x=3k-1
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -3,-\frac{1}{3},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3k-1\right)\left(k+3\right)\left(3k+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(3k+1\right)\left(3k^{2}+8k-3\right),9k^{2}-1,3k^{2}+10k+3.
3kx^{2}+x^{2}+3k-1+\left(k+3\right)x=3k-1
Whakamahia te āhuatanga tohatoha hei whakarea te 3k+1 ki te x^{2}.
3kx^{2}+x^{2}+3k-1+kx+3x=3k-1
Whakamahia te āhuatanga tohatoha hei whakarea te k+3 ki te x.
3kx^{2}+x^{2}+3k-1+kx+3x-3k=-1
Tangohia te 3k mai i ngā taha e rua.
3kx^{2}+x^{2}-1+kx+3x=-1
Pahekotia te 3k me -3k, ka 0.
3kx^{2}-1+kx+3x=-1-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
3kx^{2}+kx+3x=-1-x^{2}+1
Me tāpiri te 1 ki ngā taha e rua.
3kx^{2}+kx+3x=-x^{2}
Tāpirihia te -1 ki te 1, ka 0.
3kx^{2}+kx=-x^{2}-3x
Tangohia te 3x mai i ngā taha e rua.
\left(3x^{2}+x\right)k=-x^{2}-3x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\frac{\left(3x^{2}+x\right)k}{3x^{2}+x}=-\frac{x\left(x+3\right)}{3x^{2}+x}
Whakawehea ngā taha e rua ki te 3x^{2}+x.
k=-\frac{x\left(x+3\right)}{3x^{2}+x}
Mā te whakawehe ki te 3x^{2}+x ka wetekia te whakareanga ki te 3x^{2}+x.
k=-\frac{x+3}{3x+1}
Whakawehe -x\left(3+x\right) ki te 3x^{2}+x.
k=-\frac{x+3}{3x+1}\text{, }k\neq -\frac{1}{3}\text{ and }k\neq -3\text{ and }k\neq \frac{1}{3}
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -\frac{1}{3},-3,\frac{1}{3}.
\left(3k+1\right)x^{2}+3k-1+\left(k+3\right)x=3k-1
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -3,-\frac{1}{3},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3k-1\right)\left(k+3\right)\left(3k+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(3k+1\right)\left(3k^{2}+8k-3\right),9k^{2}-1,3k^{2}+10k+3.
3kx^{2}+x^{2}+3k-1+\left(k+3\right)x=3k-1
Whakamahia te āhuatanga tohatoha hei whakarea te 3k+1 ki te x^{2}.
3kx^{2}+x^{2}+3k-1+kx+3x=3k-1
Whakamahia te āhuatanga tohatoha hei whakarea te k+3 ki te x.
3kx^{2}+x^{2}+3k-1+kx+3x-3k=-1
Tangohia te 3k mai i ngā taha e rua.
3kx^{2}+x^{2}-1+kx+3x=-1
Pahekotia te 3k me -3k, ka 0.
3kx^{2}-1+kx+3x=-1-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
3kx^{2}+kx+3x=-1-x^{2}+1
Me tāpiri te 1 ki ngā taha e rua.
3kx^{2}+kx+3x=-x^{2}
Tāpirihia te -1 ki te 1, ka 0.
3kx^{2}+kx=-x^{2}-3x
Tangohia te 3x mai i ngā taha e rua.
\left(3x^{2}+x\right)k=-x^{2}-3x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\frac{\left(3x^{2}+x\right)k}{3x^{2}+x}=-\frac{x\left(x+3\right)}{3x^{2}+x}
Whakawehea ngā taha e rua ki te 3x^{2}+x.
k=-\frac{x\left(x+3\right)}{3x^{2}+x}
Mā te whakawehe ki te 3x^{2}+x ka wetekia te whakareanga ki te 3x^{2}+x.
k=-\frac{x+3}{3x+1}
Whakawehe -x\left(3+x\right) ki te 3x^{2}+x.
k=-\frac{x+3}{3x+1}\text{, }k\neq -\frac{1}{3}\text{ and }k\neq -3\text{ and }k\neq \frac{1}{3}
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -\frac{1}{3},-3,\frac{1}{3}.