Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3^{3}\left(e^{2}\right)^{3}f^{3}\times \left(3ef^{2}\right)^{2}}{8e^{2}f^{3}}
Whakarohaina te \left(3e^{2}f\right)^{3}.
\frac{3^{3}e^{6}f^{3}\times \left(3ef^{2}\right)^{2}}{8e^{2}f^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{27e^{6}f^{3}\times \left(3ef^{2}\right)^{2}}{8e^{2}f^{3}}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
\frac{27e^{6}f^{3}\times 3^{2}e^{2}\left(f^{2}\right)^{2}}{8e^{2}f^{3}}
Whakarohaina te \left(3ef^{2}\right)^{2}.
\frac{27e^{6}f^{3}\times 3^{2}e^{2}f^{4}}{8e^{2}f^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{27e^{6}f^{3}\times 9e^{2}f^{4}}{8e^{2}f^{3}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{243e^{6}f^{3}e^{2}f^{4}}{8e^{2}f^{3}}
Whakareatia te 27 ki te 9, ka 243.
\frac{243e^{8}f^{3}f^{4}}{8e^{2}f^{3}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 2 kia riro ai te 8.
\frac{243e^{8}f^{7}}{8e^{2}f^{3}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 4 kia riro ai te 7.
\frac{243e^{6}f^{4}}{8}
Me whakakore tahi te e^{2}f^{3} i te taurunga me te tauraro.
\frac{3^{3}\left(e^{2}\right)^{3}f^{3}\times \left(3ef^{2}\right)^{2}}{8e^{2}f^{3}}
Whakarohaina te \left(3e^{2}f\right)^{3}.
\frac{3^{3}e^{6}f^{3}\times \left(3ef^{2}\right)^{2}}{8e^{2}f^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{27e^{6}f^{3}\times \left(3ef^{2}\right)^{2}}{8e^{2}f^{3}}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
\frac{27e^{6}f^{3}\times 3^{2}e^{2}\left(f^{2}\right)^{2}}{8e^{2}f^{3}}
Whakarohaina te \left(3ef^{2}\right)^{2}.
\frac{27e^{6}f^{3}\times 3^{2}e^{2}f^{4}}{8e^{2}f^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{27e^{6}f^{3}\times 9e^{2}f^{4}}{8e^{2}f^{3}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{243e^{6}f^{3}e^{2}f^{4}}{8e^{2}f^{3}}
Whakareatia te 27 ki te 9, ka 243.
\frac{243e^{8}f^{3}f^{4}}{8e^{2}f^{3}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 2 kia riro ai te 8.
\frac{243e^{8}f^{7}}{8e^{2}f^{3}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 4 kia riro ai te 7.
\frac{243e^{6}f^{4}}{8}
Me whakakore tahi te e^{2}f^{3} i te taurunga me te tauraro.