Aromātai
1-i
Wāhi Tūturu
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(3-i\right)\left(-i\right)}{1-2i}
Tātaihia te i mā te pū o 3, kia riro ko -i.
\frac{-1-3i}{1-2i}
Whakareatia te 3-i ki te -i, ka -1-3i.
\frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1+2i.
\frac{5-5i}{5}
Mahia ngā whakarea i roto o \frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
1-i
Whakawehea te 5-5i ki te 5, kia riro ko 1-i.
Re(\frac{\left(3-i\right)\left(-i\right)}{1-2i})
Tātaihia te i mā te pū o 3, kia riro ko -i.
Re(\frac{-1-3i}{1-2i})
Whakareatia te 3-i ki te -i, ka -1-3i.
Re(\frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Me whakarea te taurunga me te tauraro o \frac{-1-3i}{1-2i} ki te haumi hiato o te tauraro, 1+2i.
Re(\frac{5-5i}{5})
Mahia ngā whakarea i roto o \frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
Re(1-i)
Whakawehea te 5-5i ki te 5, kia riro ko 1-i.
1
Ko te wāhi tūturu o 1-i ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}