\frac { ( 3 } { 2 } \cdot 4 ) ( \frac { 5 } { 12 } \cdot 3 ) : 3
Aromātai
\frac{512}{15}\approx 34.133333333
Tauwehe
\frac{2 ^ {9}}{3 \cdot 5} = 34\frac{2}{15} = 34.13333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{32\times 4}{\frac{5}{12}\times 3\times 3}
Tuhia te \frac{\frac{32\times 4}{\frac{5}{12}\times 3}}{3} hei hautanga kotahi.
\frac{128}{\frac{5}{12}\times 3\times 3}
Whakareatia te 32 ki te 4, ka 128.
\frac{128}{\frac{5\times 3}{12}\times 3}
Tuhia te \frac{5}{12}\times 3 hei hautanga kotahi.
\frac{128}{\frac{15}{12}\times 3}
Whakareatia te 5 ki te 3, ka 15.
\frac{128}{\frac{5}{4}\times 3}
Whakahekea te hautanga \frac{15}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{128}{\frac{5\times 3}{4}}
Tuhia te \frac{5}{4}\times 3 hei hautanga kotahi.
\frac{128}{\frac{15}{4}}
Whakareatia te 5 ki te 3, ka 15.
128\times \frac{4}{15}
Whakawehe 128 ki te \frac{15}{4} mā te whakarea 128 ki te tau huripoki o \frac{15}{4}.
\frac{128\times 4}{15}
Tuhia te 128\times \frac{4}{15} hei hautanga kotahi.
\frac{512}{15}
Whakareatia te 128 ki te 4, ka 512.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}