Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2i^{2}}{1+i}
Me whakarea ngā tau matatini 3+4i me 1+2i pēnā i te whakarea huarua.
\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right)}{1+i}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{3+6i+4i-8}{1+i}
Mahia ngā whakarea i roto o 3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right).
\frac{3-8+\left(6+4\right)i}{1+i}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3+6i+4i-8.
\frac{-5+10i}{1+i}
Mahia ngā tāpiri i roto o 3-8+\left(6+4\right)i.
\frac{\left(-5+10i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1-i.
\frac{\left(-5+10i\right)\left(1-i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-5+10i\right)\left(1-i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)i^{2}}{2}
Me whakarea ngā tau matatini -5+10i me 1-i pēnā i te whakarea huarua.
\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-5+5i+10i+10}{2}
Mahia ngā whakarea i roto o -5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right).
\frac{-5+10+\left(5+10\right)i}{2}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -5+5i+10i+10.
\frac{5+15i}{2}
Mahia ngā tāpiri i roto o -5+10+\left(5+10\right)i.
\frac{5}{2}+\frac{15}{2}i
Whakawehea te 5+15i ki te 2, kia riro ko \frac{5}{2}+\frac{15}{2}i.
Re(\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2i^{2}}{1+i})
Me whakarea ngā tau matatini 3+4i me 1+2i pēnā i te whakarea huarua.
Re(\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right)}{1+i})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{3+6i+4i-8}{1+i})
Mahia ngā whakarea i roto o 3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right).
Re(\frac{3-8+\left(6+4\right)i}{1+i})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3+6i+4i-8.
Re(\frac{-5+10i}{1+i})
Mahia ngā tāpiri i roto o 3-8+\left(6+4\right)i.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Me whakarea te taurunga me te tauraro o \frac{-5+10i}{1+i} ki te haumi hiato o te tauraro, 1-i.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{1^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)i^{2}}{2})
Me whakarea ngā tau matatini -5+10i me 1-i pēnā i te whakarea huarua.
Re(\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-5+5i+10i+10}{2})
Mahia ngā whakarea i roto o -5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right).
Re(\frac{-5+10+\left(5+10\right)i}{2})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -5+5i+10i+10.
Re(\frac{5+15i}{2})
Mahia ngā tāpiri i roto o -5+10+\left(5+10\right)i.
Re(\frac{5}{2}+\frac{15}{2}i)
Whakawehea te 5+15i ki te 2, kia riro ko \frac{5}{2}+\frac{15}{2}i.
\frac{5}{2}
Ko te wāhi tūturu o \frac{5}{2}+\frac{15}{2}i ko \frac{5}{2}.