Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{9+6\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+\sqrt{5}\right)^{2}.
\frac{9+6\sqrt{5}+5-\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14+6\sqrt{5}-\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Tāpirihia te 9 ki te 5, ka 14.
\frac{14+6\sqrt{5}-\left(4-\left(\sqrt{5}\right)^{2}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Whakaarohia te \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
\frac{14+6\sqrt{5}-\left(4-5\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14+6\sqrt{5}-\left(-1\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Tangohia te 5 i te 4, ka -1.
\frac{14+6\sqrt{5}+1}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Ko te tauaro o -1 ko 1.
\frac{14+6\sqrt{5}+1}{\left(\sqrt{7}\right)^{2}-4}
Whakaarohia te \left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
\frac{14+6\sqrt{5}+1}{7-4}
Ko te pūrua o \sqrt{7} ko 7.
\frac{14+6\sqrt{5}+1}{3}
Tangohia te 4 i te 7, ka 3.
\frac{15+6\sqrt{5}}{3}
Tāpirihia te 14 ki te 1, ka 15.
5+2\sqrt{5}
Whakawehea ia wā o 15+6\sqrt{5} ki te 3, kia riro ko 5+2\sqrt{5}.