Aromātai
2\sqrt{5}+5\approx 9.472135955
Tohaina
Kua tāruatia ki te papatopenga
\frac{9+6\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3+\sqrt{5}\right)^{2}.
\frac{9+6\sqrt{5}+5-\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14+6\sqrt{5}-\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Tāpirihia te 9 ki te 5, ka 14.
\frac{14+6\sqrt{5}-\left(4-\left(\sqrt{5}\right)^{2}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Whakaarohia te \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
\frac{14+6\sqrt{5}-\left(4-5\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14+6\sqrt{5}-\left(-1\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Tangohia te 5 i te 4, ka -1.
\frac{14+6\sqrt{5}+1}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Ko te tauaro o -1 ko 1.
\frac{14+6\sqrt{5}+1}{\left(\sqrt{7}\right)^{2}-4}
Whakaarohia te \left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
\frac{14+6\sqrt{5}+1}{7-4}
Ko te pūrua o \sqrt{7} ko 7.
\frac{14+6\sqrt{5}+1}{3}
Tangohia te 4 i te 7, ka 3.
\frac{15+6\sqrt{5}}{3}
Tāpirihia te 14 ki te 1, ka 15.
5+2\sqrt{5}
Whakawehea ia wā o 15+6\sqrt{5} ki te 3, kia riro ko 5+2\sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}