Aromātai
\frac{125m}{2s^{2}}
Whakaroha
\frac{125m}{2s^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{2500\times \frac{m^{2}}{s^{2}}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{20m}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{2500m^{2}}{s^{2}}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{20m}
Tuhia te 2500\times \frac{m^{2}}{s^{2}} hei hautanga kotahi.
\frac{\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}}}{20m}
Me whakarea te \frac{2500m^{2}}{s^{2}} ki te \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}\times 20m}
Tuhia te \frac{\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}}}{20m} hei hautanga kotahi.
\frac{125\left(\sqrt{2}\right)^{2}m}{2^{2}s^{2}}
Me whakakore tahi te 20m i te taurunga me te tauraro.
\frac{125\times 2m}{2^{2}s^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{250m}{2^{2}s^{2}}
Whakareatia te 125 ki te 2, ka 250.
\frac{250m}{4s^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{125m}{2s^{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{2500\times \frac{m^{2}}{s^{2}}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{20m}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{2500m^{2}}{s^{2}}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{20m}
Tuhia te 2500\times \frac{m^{2}}{s^{2}} hei hautanga kotahi.
\frac{\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}}}{20m}
Me whakarea te \frac{2500m^{2}}{s^{2}} ki te \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}\times 20m}
Tuhia te \frac{\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}}}{20m} hei hautanga kotahi.
\frac{125\left(\sqrt{2}\right)^{2}m}{2^{2}s^{2}}
Me whakakore tahi te 20m i te taurunga me te tauraro.
\frac{125\times 2m}{2^{2}s^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{250m}{2^{2}s^{2}}
Whakareatia te 125 ki te 2, ka 250.
\frac{250m}{4s^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{125m}{2s^{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}