Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2500\times \frac{m^{2}}{s^{2}}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{20m}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{2500m^{2}}{s^{2}}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{20m}
Tuhia te 2500\times \frac{m^{2}}{s^{2}} hei hautanga kotahi.
\frac{\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}}}{20m}
Me whakarea te \frac{2500m^{2}}{s^{2}} ki te \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}\times 20m}
Tuhia te \frac{\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}}}{20m} hei hautanga kotahi.
\frac{125\left(\sqrt{2}\right)^{2}m}{2^{2}s^{2}}
Me whakakore tahi te 20m i te taurunga me te tauraro.
\frac{125\times 2m}{2^{2}s^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{250m}{2^{2}s^{2}}
Whakareatia te 125 ki te 2, ka 250.
\frac{250m}{4s^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{125m}{2s^{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{2500\times \frac{m^{2}}{s^{2}}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{20m}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{2500m^{2}}{s^{2}}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{20m}
Tuhia te 2500\times \frac{m^{2}}{s^{2}} hei hautanga kotahi.
\frac{\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}}}{20m}
Me whakarea te \frac{2500m^{2}}{s^{2}} ki te \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}\times 20m}
Tuhia te \frac{\frac{2500m^{2}\left(\sqrt{2}\right)^{2}}{s^{2}\times 2^{2}}}{20m} hei hautanga kotahi.
\frac{125\left(\sqrt{2}\right)^{2}m}{2^{2}s^{2}}
Me whakakore tahi te 20m i te taurunga me te tauraro.
\frac{125\times 2m}{2^{2}s^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{250m}{2^{2}s^{2}}
Whakareatia te 125 ki te 2, ka 250.
\frac{250m}{4s^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{125m}{2s^{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.