Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(2x-1\right)\left(2x+1\right)=3x-2+2x^{2}
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,6.
\left(4x-2\right)\left(2x+1\right)=3x-2+2x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-1.
8x^{2}-2=3x-2+2x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-2 ki te 2x+1 ka whakakotahi i ngā kupu rite.
8x^{2}-2-3x=-2+2x^{2}
Tangohia te 3x mai i ngā taha e rua.
8x^{2}-2-3x-\left(-2\right)=2x^{2}
Tangohia te -2 mai i ngā taha e rua.
8x^{2}-2-3x+2=2x^{2}
Ko te tauaro o -2 ko 2.
8x^{2}-2-3x+2-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
8x^{2}-3x-2x^{2}=0
Tāpirihia te -2 ki te 2, ka 0.
6x^{2}-3x=0
Pahekotia te 8x^{2} me -2x^{2}, ka 6x^{2}.
x\left(6x-3\right)=0
Tauwehea te x.
x=0 x=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te 6x-3=0.
2\left(2x-1\right)\left(2x+1\right)=3x-2+2x^{2}
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,6.
\left(4x-2\right)\left(2x+1\right)=3x-2+2x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-1.
8x^{2}-2=3x-2+2x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-2 ki te 2x+1 ka whakakotahi i ngā kupu rite.
8x^{2}-2-3x=-2+2x^{2}
Tangohia te 3x mai i ngā taha e rua.
8x^{2}-2-3x-\left(-2\right)=2x^{2}
Tangohia te -2 mai i ngā taha e rua.
8x^{2}-2-3x+2=2x^{2}
Ko te tauaro o -2 ko 2.
8x^{2}-2-3x+2-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
8x^{2}-3x-2x^{2}=0
Tāpirihia te -2 ki te 2, ka 0.
6x^{2}-3x=0
Pahekotia te 8x^{2} me -2x^{2}, ka 6x^{2}.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±3}{2\times 6}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
x=\frac{3±3}{2\times 6}
Ko te tauaro o -3 ko 3.
x=\frac{3±3}{12}
Whakareatia 2 ki te 6.
x=\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{3±3}{12} ina he tāpiri te ±. Tāpiri 3 ki te 3.
x=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{0}{12}
Nā, me whakaoti te whārite x=\frac{3±3}{12} ina he tango te ±. Tango 3 mai i 3.
x=0
Whakawehe 0 ki te 12.
x=\frac{1}{2} x=0
Kua oti te whārite te whakatau.
2\left(2x-1\right)\left(2x+1\right)=3x-2+2x^{2}
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,6.
\left(4x-2\right)\left(2x+1\right)=3x-2+2x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-1.
8x^{2}-2=3x-2+2x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-2 ki te 2x+1 ka whakakotahi i ngā kupu rite.
8x^{2}-2-3x=-2+2x^{2}
Tangohia te 3x mai i ngā taha e rua.
8x^{2}-2-3x-2x^{2}=-2
Tangohia te 2x^{2} mai i ngā taha e rua.
6x^{2}-2-3x=-2
Pahekotia te 8x^{2} me -2x^{2}, ka 6x^{2}.
6x^{2}-3x=-2+2
Me tāpiri te 2 ki ngā taha e rua.
6x^{2}-3x=0
Tāpirihia te -2 ki te 2, ka 0.
\frac{6x^{2}-3x}{6}=\frac{0}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\left(-\frac{3}{6}\right)x=\frac{0}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{1}{2}x=\frac{0}{6}
Whakahekea te hautanga \frac{-3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{1}{2}x=0
Whakawehe 0 ki te 6.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
Whakarūnātia.
x=\frac{1}{2} x=0
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.