Whakaoti mō x
x=\frac{\sqrt{154}}{25}\approx 0.496386946
x=-\frac{\sqrt{154}}{25}\approx -0.496386946
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { ( 2 x ) ^ { 2 } } { 32 } = 308 \times 10 ^ { - 4 }
Tohaina
Kua tāruatia ki te papatopenga
\left(2x\right)^{2}=9856\times 10^{-4}
Whakareatia ngā taha e rua o te whārite ki te 32.
2^{2}x^{2}=9856\times 10^{-4}
Whakarohaina te \left(2x\right)^{2}.
4x^{2}=9856\times 10^{-4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}=9856\times \frac{1}{10000}
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
4x^{2}=\frac{616}{625}
Whakareatia te 9856 ki te \frac{1}{10000}, ka \frac{616}{625}.
x^{2}=\frac{\frac{616}{625}}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}=\frac{616}{625\times 4}
Tuhia te \frac{\frac{616}{625}}{4} hei hautanga kotahi.
x^{2}=\frac{616}{2500}
Whakareatia te 625 ki te 4, ka 2500.
x^{2}=\frac{154}{625}
Whakahekea te hautanga \frac{616}{2500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{\sqrt{154}}{25} x=-\frac{\sqrt{154}}{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(2x\right)^{2}=9856\times 10^{-4}
Whakareatia ngā taha e rua o te whārite ki te 32.
2^{2}x^{2}=9856\times 10^{-4}
Whakarohaina te \left(2x\right)^{2}.
4x^{2}=9856\times 10^{-4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}=9856\times \frac{1}{10000}
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
4x^{2}=\frac{616}{625}
Whakareatia te 9856 ki te \frac{1}{10000}, ka \frac{616}{625}.
4x^{2}-\frac{616}{625}=0
Tangohia te \frac{616}{625} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-\frac{616}{625}\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -\frac{616}{625} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-\frac{616}{625}\right)}}{2\times 4}
Pūrua 0.
x=\frac{0±\sqrt{-16\left(-\frac{616}{625}\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{0±\sqrt{\frac{9856}{625}}}{2\times 4}
Whakareatia -16 ki te -\frac{616}{625}.
x=\frac{0±\frac{8\sqrt{154}}{25}}{2\times 4}
Tuhia te pūtakerua o te \frac{9856}{625}.
x=\frac{0±\frac{8\sqrt{154}}{25}}{8}
Whakareatia 2 ki te 4.
x=\frac{\sqrt{154}}{25}
Nā, me whakaoti te whārite x=\frac{0±\frac{8\sqrt{154}}{25}}{8} ina he tāpiri te ±.
x=-\frac{\sqrt{154}}{25}
Nā, me whakaoti te whārite x=\frac{0±\frac{8\sqrt{154}}{25}}{8} ina he tango te ±.
x=\frac{\sqrt{154}}{25} x=-\frac{\sqrt{154}}{25}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}