Aromātai
\frac{4n^{6}}{m^{5}}
Whakaroha
\frac{4n^{6}}{m^{5}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{2^{6}\left(m^{\frac{1}{3}}\right)^{6}\left(n^{\frac{5}{6}}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Whakarohaina te \left(2m^{\frac{1}{3}}n^{\frac{5}{6}}\right)^{6}.
\frac{2^{6}m^{2}\left(n^{\frac{5}{6}}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{1}{3} me te 6 kia riro ai te 2.
\frac{2^{6}m^{2}n^{5}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{5}{6} me te 6 kia riro ai te 5.
\frac{64m^{2}n^{5}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Tātaihia te 2 mā te pū o 6, kia riro ko 64.
\frac{64m^{2}n^{5}}{2^{-1}\left(m^{-2}\right)^{-1}\left(n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Whakarohaina te \left(2m^{-2}n^{6}\right)^{-1}.
\frac{64m^{2}n^{5}}{2^{-1}m^{2}\left(n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -2 me te -1 kia riro ai te 2.
\frac{64m^{2}n^{5}}{2^{-1}m^{2}n^{-6}\times \left(2mn\right)^{5}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te -1 kia riro ai te -6.
\frac{64m^{2}n^{5}}{\frac{1}{2}m^{2}n^{-6}\times \left(2mn\right)^{5}}
Tātaihia te 2 mā te pū o -1, kia riro ko \frac{1}{2}.
\frac{64m^{2}n^{5}}{\frac{1}{2}m^{2}n^{-6}\times 2^{5}m^{5}n^{5}}
Whakarohaina te \left(2mn\right)^{5}.
\frac{64m^{2}n^{5}}{\frac{1}{2}m^{2}n^{-6}\times 32m^{5}n^{5}}
Tātaihia te 2 mā te pū o 5, kia riro ko 32.
\frac{64m^{2}n^{5}}{16m^{2}n^{-6}m^{5}n^{5}}
Whakareatia te \frac{1}{2} ki te 32, ka 16.
\frac{64m^{2}n^{5}}{16m^{7}n^{-6}n^{5}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 5 kia riro ai te 7.
\frac{64m^{2}n^{5}}{16m^{7}n^{-1}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -6 me te 5 kia riro ai te -1.
\frac{4n^{5}}{\frac{1}{n}m^{5}}
Me whakakore tahi te 16m^{2} i te taurunga me te tauraro.
\frac{4n^{6}}{m^{5}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{2^{6}\left(m^{\frac{1}{3}}\right)^{6}\left(n^{\frac{5}{6}}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Whakarohaina te \left(2m^{\frac{1}{3}}n^{\frac{5}{6}}\right)^{6}.
\frac{2^{6}m^{2}\left(n^{\frac{5}{6}}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{1}{3} me te 6 kia riro ai te 2.
\frac{2^{6}m^{2}n^{5}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{5}{6} me te 6 kia riro ai te 5.
\frac{64m^{2}n^{5}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Tātaihia te 2 mā te pū o 6, kia riro ko 64.
\frac{64m^{2}n^{5}}{2^{-1}\left(m^{-2}\right)^{-1}\left(n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Whakarohaina te \left(2m^{-2}n^{6}\right)^{-1}.
\frac{64m^{2}n^{5}}{2^{-1}m^{2}\left(n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -2 me te -1 kia riro ai te 2.
\frac{64m^{2}n^{5}}{2^{-1}m^{2}n^{-6}\times \left(2mn\right)^{5}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te -1 kia riro ai te -6.
\frac{64m^{2}n^{5}}{\frac{1}{2}m^{2}n^{-6}\times \left(2mn\right)^{5}}
Tātaihia te 2 mā te pū o -1, kia riro ko \frac{1}{2}.
\frac{64m^{2}n^{5}}{\frac{1}{2}m^{2}n^{-6}\times 2^{5}m^{5}n^{5}}
Whakarohaina te \left(2mn\right)^{5}.
\frac{64m^{2}n^{5}}{\frac{1}{2}m^{2}n^{-6}\times 32m^{5}n^{5}}
Tātaihia te 2 mā te pū o 5, kia riro ko 32.
\frac{64m^{2}n^{5}}{16m^{2}n^{-6}m^{5}n^{5}}
Whakareatia te \frac{1}{2} ki te 32, ka 16.
\frac{64m^{2}n^{5}}{16m^{7}n^{-6}n^{5}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 5 kia riro ai te 7.
\frac{64m^{2}n^{5}}{16m^{7}n^{-1}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -6 me te 5 kia riro ai te -1.
\frac{4n^{5}}{\frac{1}{n}m^{5}}
Me whakakore tahi te 16m^{2} i te taurunga me te tauraro.
\frac{4n^{6}}{m^{5}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}