Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2\left(-1\right)-1\right)\left(i^{3}+2\right)}{2-i}
Tātaihia te i mā te pū o 2, kia riro ko -1.
\frac{\left(-2-1\right)\left(i^{3}+2\right)}{2-i}
Whakareatia te 2 ki te -1, ka -2.
\frac{-3\left(i^{3}+2\right)}{2-i}
Tangohia te 1 i te -2, ka -3.
\frac{-3\left(-i+2\right)}{2-i}
Tātaihia te i mā te pū o 3, kia riro ko -i.
\left(-\frac{6}{5}-\frac{3}{5}i\right)\left(-i+2\right)
Whakawehea te -3\left(-i+2\right) ki te 2-i, kia riro ko \left(-\frac{6}{5}-\frac{3}{5}i\right)\left(-i+2\right).
-\frac{3}{5}+\frac{6}{5}i+\left(-\frac{12}{5}-\frac{6}{5}i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{6}{5}-\frac{3}{5}i ki te -i+2.
-3
Tāpirihia te -\frac{3}{5}+\frac{6}{5}i ki te -\frac{12}{5}-\frac{6}{5}i, ka -3.
Re(\frac{\left(2\left(-1\right)-1\right)\left(i^{3}+2\right)}{2-i})
Tātaihia te i mā te pū o 2, kia riro ko -1.
Re(\frac{\left(-2-1\right)\left(i^{3}+2\right)}{2-i})
Whakareatia te 2 ki te -1, ka -2.
Re(\frac{-3\left(i^{3}+2\right)}{2-i})
Tangohia te 1 i te -2, ka -3.
Re(\frac{-3\left(-i+2\right)}{2-i})
Tātaihia te i mā te pū o 3, kia riro ko -i.
Re(\left(-\frac{6}{5}-\frac{3}{5}i\right)\left(-i+2\right))
Whakawehea te -3\left(-i+2\right) ki te 2-i, kia riro ko \left(-\frac{6}{5}-\frac{3}{5}i\right)\left(-i+2\right).
Re(-\frac{3}{5}+\frac{6}{5}i+\left(-\frac{12}{5}-\frac{6}{5}i\right))
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{6}{5}-\frac{3}{5}i ki te -i+2.
Re(-3)
Tāpirihia te -\frac{3}{5}+\frac{6}{5}i ki te -\frac{12}{5}-\frac{6}{5}i, ka -3.
-3
Ko te wāhi tūturu o -3 ko -3.