Whakaoti mō a
a\leq 1
Tohaina
Kua tāruatia ki te papatopenga
2\left(\frac{\left(2a-5\right)^{2}}{2}-\left(a-3\right)^{2}\right)+1\geq 2a^{2}
Whakareatia ngā taha e rua o te whārite ki te 2. I te mea he tōrunga te 2, kāore e huri te ahunga koreōrite.
2\left(\frac{4a^{2}-20a+25}{2}-\left(a-3\right)^{2}\right)+1\geq 2a^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2a-5\right)^{2}.
2\left(\frac{4a^{2}-20a+25}{2}-\left(a^{2}-6a+9\right)\right)+1\geq 2a^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(a-3\right)^{2}.
2\left(\frac{4a^{2}-20a+25}{2}-a^{2}+6a-9\right)+1\geq 2a^{2}
Hei kimi i te tauaro o a^{2}-6a+9, kimihia te tauaro o ia taurangi.
2\times \frac{4a^{2}-20a+25}{2}-2a^{2}+12a-18+1\geq 2a^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{4a^{2}-20a+25}{2}-a^{2}+6a-9.
\frac{2\left(4a^{2}-20a+25\right)}{2}-2a^{2}+12a-18+1\geq 2a^{2}
Tuhia te 2\times \frac{4a^{2}-20a+25}{2} hei hautanga kotahi.
4a^{2}-20a+25-2a^{2}+12a-18+1\geq 2a^{2}
Me whakakore te 2 me te 2.
2a^{2}-20a+25+12a-18+1\geq 2a^{2}
Pahekotia te 4a^{2} me -2a^{2}, ka 2a^{2}.
2a^{2}-8a+25-18+1\geq 2a^{2}
Pahekotia te -20a me 12a, ka -8a.
2a^{2}-8a+7+1\geq 2a^{2}
Tangohia te 18 i te 25, ka 7.
2a^{2}-8a+8\geq 2a^{2}
Tāpirihia te 7 ki te 1, ka 8.
2a^{2}-8a+8-2a^{2}\geq 0
Tangohia te 2a^{2} mai i ngā taha e rua.
-8a+8\geq 0
Pahekotia te 2a^{2} me -2a^{2}, ka 0.
-8a\geq -8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
a\leq \frac{-8}{-8}
Whakawehea ngā taha e rua ki te -8. I te mea he tōraro a -8, ka huri te ahunga koreōrite.
a\leq 1
Whakawehea te -8 ki te -8, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}