Aromātai
\frac{2475}{197}\approx 12.563451777
Tauwehe
\frac{3 ^ {2} \cdot 5 ^ {2} \cdot 11}{197} = 12\frac{111}{197} = 12.563451776649746
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{14+1}{7}\times 5}{\frac{3}{7}+\frac{2}{6}+\frac{1}{11}}
Whakareatia te 2 ki te 7, ka 14.
\frac{\frac{15}{7}\times 5}{\frac{3}{7}+\frac{2}{6}+\frac{1}{11}}
Tāpirihia te 14 ki te 1, ka 15.
\frac{\frac{15\times 5}{7}}{\frac{3}{7}+\frac{2}{6}+\frac{1}{11}}
Tuhia te \frac{15}{7}\times 5 hei hautanga kotahi.
\frac{\frac{75}{7}}{\frac{3}{7}+\frac{2}{6}+\frac{1}{11}}
Whakareatia te 15 ki te 5, ka 75.
\frac{\frac{75}{7}}{\frac{3}{7}+\frac{1}{3}+\frac{1}{11}}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{75}{7}}{\frac{9}{21}+\frac{7}{21}+\frac{1}{11}}
Ko te maha noa iti rawa atu o 7 me 3 ko 21. Me tahuri \frac{3}{7} me \frac{1}{3} ki te hautau me te tautūnga 21.
\frac{\frac{75}{7}}{\frac{9+7}{21}+\frac{1}{11}}
Tā te mea he rite te tauraro o \frac{9}{21} me \frac{7}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{75}{7}}{\frac{16}{21}+\frac{1}{11}}
Tāpirihia te 9 ki te 7, ka 16.
\frac{\frac{75}{7}}{\frac{176}{231}+\frac{21}{231}}
Ko te maha noa iti rawa atu o 21 me 11 ko 231. Me tahuri \frac{16}{21} me \frac{1}{11} ki te hautau me te tautūnga 231.
\frac{\frac{75}{7}}{\frac{176+21}{231}}
Tā te mea he rite te tauraro o \frac{176}{231} me \frac{21}{231}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{75}{7}}{\frac{197}{231}}
Tāpirihia te 176 ki te 21, ka 197.
\frac{75}{7}\times \frac{231}{197}
Whakawehe \frac{75}{7} ki te \frac{197}{231} mā te whakarea \frac{75}{7} ki te tau huripoki o \frac{197}{231}.
\frac{75\times 231}{7\times 197}
Me whakarea te \frac{75}{7} ki te \frac{231}{197} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{17325}{1379}
Mahia ngā whakarea i roto i te hautanga \frac{75\times 231}{7\times 197}.
\frac{2475}{197}
Whakahekea te hautanga \frac{17325}{1379} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}