Aromātai
3
Tauwehe
3
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2\times 9\times 5^{3}\right)^{4}}{2^{4}\times 3^{7}\times 5^{12}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{\left(18\times 5^{3}\right)^{4}}{2^{4}\times 3^{7}\times 5^{12}}
Whakareatia te 2 ki te 9, ka 18.
\frac{\left(18\times 125\right)^{4}}{2^{4}\times 3^{7}\times 5^{12}}
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
\frac{2250^{4}}{2^{4}\times 3^{7}\times 5^{12}}
Whakareatia te 18 ki te 125, ka 2250.
\frac{25628906250000}{2^{4}\times 3^{7}\times 5^{12}}
Tātaihia te 2250 mā te pū o 4, kia riro ko 25628906250000.
\frac{25628906250000}{16\times 3^{7}\times 5^{12}}
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\frac{25628906250000}{16\times 2187\times 5^{12}}
Tātaihia te 3 mā te pū o 7, kia riro ko 2187.
\frac{25628906250000}{34992\times 5^{12}}
Whakareatia te 16 ki te 2187, ka 34992.
\frac{25628906250000}{34992\times 244140625}
Tātaihia te 5 mā te pū o 12, kia riro ko 244140625.
\frac{25628906250000}{8542968750000}
Whakareatia te 34992 ki te 244140625, ka 8542968750000.
3
Whakawehea te 25628906250000 ki te 8542968750000, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}