Aromātai
-2-i
Wāhi Tūturu
-2
Tohaina
Kua tāruatia ki te papatopenga
\frac{3+4i-\left(2+i\right)\left(2-i\right)}{\left(1-i\right)^{2}}
Tātaihia te 2+i mā te pū o 2, kia riro ko 3+4i.
\frac{3+4i-5}{\left(1-i\right)^{2}}
Whakareatia te 2+i ki te 2-i, ka 5.
\frac{-2+4i}{\left(1-i\right)^{2}}
Tangohia te 5 i te 3+4i, ka -2+4i.
\frac{-2+4i}{-2i}
Tātaihia te 1-i mā te pū o 2, kia riro ko -2i.
\frac{-4-2i}{2}
Me whakarea tahi te taurunga me te tauraro ki te wae pohewa i.
-2-i
Whakawehea te -4-2i ki te 2, kia riro ko -2-i.
Re(\frac{3+4i-\left(2+i\right)\left(2-i\right)}{\left(1-i\right)^{2}})
Tātaihia te 2+i mā te pū o 2, kia riro ko 3+4i.
Re(\frac{3+4i-5}{\left(1-i\right)^{2}})
Whakareatia te 2+i ki te 2-i, ka 5.
Re(\frac{-2+4i}{\left(1-i\right)^{2}})
Tangohia te 5 i te 3+4i, ka -2+4i.
Re(\frac{-2+4i}{-2i})
Tātaihia te 1-i mā te pū o 2, kia riro ko -2i.
Re(\frac{-4-2i}{2})
Me whakarea tahi te taurunga me te tauraro o \frac{-2+4i}{-2i} ki te wae pohewa i.
Re(-2-i)
Whakawehea te -4-2i ki te 2, kia riro ko -2-i.
-2
Ko te wāhi tūturu o -2-i ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}